Theo kế hoạch 1 tổ sản xuất phải may 120 bộ quần áo phòng dịch covid với năng xuất và thời gian quy định. Khi sản xuất, mỗi giờ tổ đã may vượt mức 3 bộ. Do đó không những tổ hoàn thành sớm hơn dự định 1 giờ mà còn may thêm 6 bộ nữa . Hỏi theo kế hoạch mỗi giờ tổ sản xuất phải may na nhiêu bộ quần áo (Kèm bảng giúp em)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số áo tổ phải sản xuất theo kế hoạch là x áo (x ∈ N, x > 0)
Vậy số áo mà tổ phải sản xuất theo kế hoạch là 420 áo
Đ/S: 420 chiếc áo.
Bài 21:
Gọi x (sản phẩm/giờ) là năng suất dự kiến ban đầu của người đó \(\left(x\inℕ^∗\right)\)
=> x + 2 (sản phẩm/giờ) là năng suất lúc sau của người đó
Theo bài ta có phương trình sau:
\(\frac{150}{x}-\frac{1}{2}-2=\frac{150-2x}{x+2}\)
\(\Leftrightarrow300\left(x+2\right)-x\left(x+2\right)-4x\left(x+2\right)=2\left(150-2x\right)x\)
\(\Leftrightarrow300x+600-x^2-2x-4x^2-8x=300x-4x^2\)
\(\Leftrightarrow x^2+10x-600=0\)
\(\Leftrightarrow\left(x-20\right)\left(x+30\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-20=0\\x+30=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=20\left(tm\right)\\x=-30\left(ktm\right)\end{cases}}\)
Vậy ban đầu năng suất người đó là 20 (sản phẩm/giờ)
Bài 22:
Gọi x (sản phẩm/giờ) là năng suất dự kiến của người đó \(\left(x\inℕ^∗;x< 20\right)\)
=> x + 1 (sản phẩm/giờ) là năng suất lúc sau của người đó
Theo bài ra ta có phương trình:
\(\frac{80}{x+1}-\frac{1}{5}=\frac{72}{x}\)
\(\Leftrightarrow400x-x\left(x+1\right)=360\left(x+1\right)\)
\(\Leftrightarrow400x-x^2-x=360x+360\)
\(\Leftrightarrow x^2-39x+360=0\)
\(\Leftrightarrow\left(x-15\right)\left(x-24\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-15=0\\x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=15\left(tm\right)\\x=24\left(ktm\right)\end{cases}}\)
Vậy năng suất ban đầu là 15 sp/giờ
Lời giải:
Gọi thời gian dự kiến là $a$ ngày thì năng suất dự kiến là $\frac{130}{a}$ sản phẩm / ngày.
Theo bài ra ta có:
Năng suất thực tế: $\frac{130}{a}+2$
Thời gian thực tế: $a-2$
Sản lượng thực tế: $(\frac{130}{a}+2)(a-2)=130+2$
$\Leftrightarrow a-\frac{130}{a}=3$
$\Leftrightarrow a^2-3a-130=0$
$\Rightarrow a=13$ (chọn) hoặc $a=-10$ (loại)
Vậy thời gian dự kiến là $13$ ngày.
Gọi số sản phẩm tổ dự định làm theo kế hoạch là x (sản phẩm, ).
Thiết lập được PT:
Từ đó tìm được x = 800 (sản phẩm)
Lời giải:
Giả sử theo dự định mỗi giờ tổ sản xuất làm $a$ khẩu trang và làm trong $b$ giờ
Theo bài ra ta có:
$b=\frac{600}{a}$
$b-1=\frac{400}{a}+\frac{200}{a+10}$
$\Rightarrow 1=\frac{600}{a}-(\frac{400}{a}+\frac{200}{a+10})$
$\Leftrightarrow 1=\frac{200}{a}-\frac{200}{a+10}$
Kết hợp với điều kiện $a>0$ suy ra $a=40$ (chiếc)
Vậy theo dự định mỗi h làm $40$ chiếc khẩu trang.
Gọi x là số áo mỗi ngày theo kế hoạch phải làm.
Tổng số áo phải may theo kế hoạch là: 15x(áo)
Số áo mỗi ngày làm thực tế: x + 20 (áo)
Số ngày làm thực tế là: 15 - 3 =12(ngày)
Tổng số áo may thực tế: 12(x + 20) (áo)
Vì số áo thực tế may không thay đổi so với kế hoặc nên ta có pt:
15x = 12(x + 20)
15x = 12x + 240
3x = 240
x = 80(nhận)
Vậy tổng số áo phải may theo kế hoạch là: 15 x 80 = 1200 cái áo.
h vui lòng xem xong nhớ tl lại để mình biết nhé
Gọi x(sản phẩm) và y(sản phẩm) lần lượt là số sản phẩm mà tổ I và tổ II được giao(Điều kiện: \(x,y\in Z^+\))
Vì theo kế hoạch hai tổ sản xuất 600 sản phẩm nên ta có phương trình:
x+y=600(1)
Số sản phẩm tổ I sản xuất được khi vượt mức kế hoạch 18% là:
\(x+\dfrac{18}{100}x=\dfrac{118}{100}x=\dfrac{59}{50}x\)
Số sản phẩm tổ II sản xuất được khi vượt mức kế hoạch 21% là:
\(y+\dfrac{21}{100}y=\dfrac{121}{100}y\)
Vì trong thời gian quy định, do áp dụng kỹ thuật mới nên hai tổ đã hoàn thành vượt mức 120 sản phẩm nên ta có phương trình:
\(\dfrac{59}{50}x+\dfrac{121}{100}y=720\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=600\\\dfrac{59}{50}x+\dfrac{121}{100}y=720\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{59}{50}x+\dfrac{59}{50}y=708\\\dfrac{59}{50}x+\dfrac{121}{100}y=720\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{100}y=-12\\x+y=600\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=400\\x=600-y=600-400=200\end{matrix}\right.\)(thỏa ĐK)
Vậy: Số sản phẩm tổ I được giao là 200 sản phẩm
Số sản phẩm tổ II được giao là 400 sản phẩm
Gọi số giờ người công nhân dự định làm 60 sản phẩm là x (h) ( x > 0)
thì mỗi giờ người công nhân làm được:
\(\frac{60}{x}\) sản phẩm
Do cải tiến kĩ thuật nên thời gian làm việc chỉ còn:
\(x-\frac{1}{2}\) (h)
Và số sản phẩm là 63. Nên mỗi gờ người công nhân làm được là:
\(\frac{63}{x-\frac{1}{2}}\) sản phẩm
Theo giả thiết ta có phương trình
\(\frac{63}{x-\frac{1}{2}}=\frac{60}{x}+2\)
Bạn giải phương trình này sẽ tìm được đáp số nhé
gọi năng suất dự kiến làm là x (x>0) bộ/h
thời gian dự kiến làm xong là \(\dfrac{120}{x}\)h
năng suất thực tế làm x+3 bộ/h
thời gian thực tế làm xong \(\dfrac{120+6}{x+3}\)h
vì hoàn thành sớm hơn dự định 1 ngày nên ta có pt
\(\dfrac{120}{x}\)-1=\(\dfrac{120+6}{x+3}\)
giải pt x=15 bộ/h
vậy năng suất dự kiến may là 15 bộ trên 1 h