số nguyên tố P thỏa mãn
\(p^4+2\)cũng là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
Do x, y nguyên dương nên số đã cho là SNT khi:
\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)
\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Thay vào kiểm tra thấy thỏa mãn
2. \(N=n^4+4^n\)
- Với n chẵn hiển nhiên N là hợp số
- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)
\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)
\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)
Mặt khác:
\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)
\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)
\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1
\(\Rightarrow\) N là hợp số
Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).
Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9
Nó cũng không thể chỉ chứa các chữ số 3 và 9 (sẽ chia hết cho 3)
Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)
*p = 2 thì p\(^2\)+2 = 6(loại vì 6 không phải là số nghuyên tố)
* p = 3 thì p\(^2\)+2 = 11(chọn vì 11 là số nghuyên tố)
\(\Rightarrow\) p\(^3\) + 2 = 3\(^3\)+2 = 29 (là số nghuyên tố)
* p >3
Vì p là số nguyên tố \(\Rightarrow\)p ko chia hết cho 3 (1)
p thuộc Z \(\Rightarrow p^2\)là số chính phương (2)
từ (1),(2) \(\Rightarrow p^2\) chia 3 dư 1
\(\Rightarrow p^2\)+2 chia hết cho 3 (3)
Mặt khác p>3
\(\Rightarrow p^2>9\)
\(\Rightarrow p^2\)+2 > 11 (4)
Từ (3),(4) \(\Rightarrow p^2\)+2 ko là số nguyên tố (trái với đề bài)
Với P>3 thì P có dạng 3n+1 hoặc 3n+2
*P=3n+1
=>P2+1994=(3n+1)2+1994=9n2+6n+1995=3.(3n2+2n+665) chia hết cho 3
=>P2+1994 không phải số nguyên tố
*P=3n+2
=>P2+1994=(3n+2)2+1994=9n2+12n+1998=3.(3n2+4n+666) chia hết cho 3
=>P2+1994 không phải là số nguyên tố
Suy ra: P không thể lớn hơn 3 =>P có thể là 2 hoặc 3
*Với P=2
=>P2+1994=1998 không phải là số nguyên tố
*Với P=3
=>P2+1998=2007 là số nguyên tô
Vậy P=3
Với P>3 thì P có dạng 3n+1 hoặc 3n+2
*P=3n+1
=>P2+1994=(3n+1)2+1994=9n2+6n+1995=3.(3n2+2n+665) chia hết cho 3
=>P2+1994 không phải số nguyên tố
*P=3n+2
=>P2+1994=(3n+2)2+1994=9n2+12n+1998=3.(3n2+4n+666) chia hết cho 3
=>P2+1994 không phải là số nguyên tố
Suy ra: P không thể lớn hơn 3 =>P có thể là 2 hoặc 3
*Với P=2
=>P2+1994=1998 không phải là số nguyên tố
*Với P=3
=>P2+1998=2007 là số nguyên tô
Vậy P=3
-Nếu p = 2 => p^2 +1 = 2^2+1=5 ( là số ntố )
p^4+1=2^4+1=17 ( )
=> p=2( t/m)
-Nếu p>2
mà p là số ntố
=>p = 2k+1
=>p^2+1=(2k+1)^2+1=(2k+1)(2k+1)+1
=2k(2k+1) + (2k+1) +1
= 4k^2 + 2k+2k+1+1
=4k^2 + 4k+2
=2(2k^2 + 2k+1)
mà 2(2k^2 +2k+1) c ia ết c o 2
=>p=2k+1 (loại)
Vì p là số nguyên tố, Ta xét:
+) p=2 => 2p3+5=2.23+5=21 (loại vì 21 chia hết cho 7)
+) p=3 => p3-6=33-6=21 (loại vì 21 chia hết cho 7)
+) p=5 => p3-6=53-6=119 (loại vì 119 chia hết cho 7)
+) p=7 => p3-6=73-6=337 và 2p3+5=2.73+5=691. Vì 337 và 691 đều là số nguyên tố nên p=7 thỏa mãn đề bài.
+) p>7. Xét p=7k+1, ..., 7k+6 (đều chia 7 dư 13,...,63)
Bài bạn ấy làm đúng rồi
Làm tiếp
________________________________
Với p = 7k + 1 ta có: \(2p^3+5=2\left(7k+1\right)^3+5\equiv2.1+5\equiv0\left(mod7\right)\)=>\(2p^3+5⋮7\)loại
Với p = 7k+2 ta có: \(2p^3+5=2\left(7k+2\right)^3+5\equiv2.2^3+5\equiv0\left(mod7\right)\)=> \(2p^3+5⋮7\)loại
Với p = 7k + 3 ta có: \(p^3-6=\left(7k+3\right)^3-6\equiv3^3-6\equiv0\left(mod7\right)\)=> loại
Với p = 7k + 4 ta có: \(2p^3+5=2\left(7k+4\right)^3+5\equiv2.4^3+5\equiv0\left(mod7\right)\)=> loại
Với p = 7k + 5 ta có: \(p^3-6=\left(7k+5\right)^3-6\equiv5^3-6\equiv0\left(mod7\right)\)=> loại
Với p = 7k + 6 ta có: \(p^3-6=\left(7k+6\right)^3-6\equiv6^3-6\equiv0\left(mod7\right)\)=> loại
Vậy chỉ có p = 7 thỏa mãn
khi đó: p^2+ 10 = 59 là số nguyên tố.( đpcm)