cho tam giac ABC vuong taiA , cạnh BC cố định và AH vuông góc với BC tại H vẽ về phía ngoài tam giác ABC hai hình vuông ABDE và ACFG. Gọi M,N là chân các đường vuông góc kẻ từ D và F đến BC. Chứng minh DM+FN=BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nhé
CM tam giác ABC= tam giác AEG
\(\Rightarrow\)góc GEA= góc ABC
góc EGA = góc ACB
ta có góc HAC= góc ABH ( cùng phụ goc BAH)
góc OAE= góc HAC
\(\Rightarrow\) góc OEA= góc OAE
\(\Rightarrow\)OA=OE
CMTT: OA=OG
suy ra OE=OG (1)
ta có góc GAC+ HAC+BAH=180độ
mà BAH=OAG
 \(\Rightarrow\) OAG+GAC+HAC=180 độ
O,A ,H thẳng hàng(2)
từ 1 va 2 suy ra đfcm
O là trung điểm EG
a/
Ta có
\(DN\perp HA\left(gt\right);BC\perp HA\left(gt\right)\) => DN//BC
\(\Rightarrow\widehat{NDB}+\widehat{CBD}=180^o\) (Hai góc trong cùng phía bù nhau)
\(\Rightarrow\widehat{NDA}+\widehat{ADB}+\widehat{ABD}+\widehat{ABC}=180^o\)
Ta có
tg ABD vuông cân tại A \(\Rightarrow\widehat{ADB}=\widehat{ABD}=45^o\Rightarrow\widehat{ADB}+\widehat{ABD}=90^o\)
\(\Rightarrow\widehat{NDA}+\widehat{ABC}=180^o-90^o=90^o\)
Xét tg vuông ABH
\(\widehat{BAH}+\widehat{ABC}=90^o\)
\(\Rightarrow\widehat{NDA}=\widehat{BAH}\)
Xét tg vuông NDA và tg vuông BAH có
\(\widehat{NDA}=\widehat{BAH}\left(cmt\right)\)
AD=AB (cạnh bên tg cân)
=> tg NDA = tg BAH (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
=> DN = AH
C/m tương tự ta cũng có tg vuông MAE = tg vuông CHA => EM=AH
b/
Ta có
\(DN\perp HA\left(gt\right);EM\perp HA\left(gt\right)\) => DN//EM
Xét tg vuông DIN và tg vuông EIM có
DN=EM (cùng bằng AH)
\(\widehat{IDN}=\widehat{IEM}\) (góc so le trong)
=> tg DIN = tg EIM (Hai tg vuông có 1 cạnh góc vuông và góc nhọn tương ứng bằng nhau)
=> DI=IE