câu 1
a, làm tính nhân -5y*(x^2-xy+y^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{2}{3}xy^2\right)\left(x^2y-xy+\dfrac{x}{2}+\dfrac{1}{4}\right)\)
\(=\dfrac{2}{3}x^3y^3-\dfrac{2}{3}x^2y^3+\dfrac{1}{3}x^2y^2+\dfrac{1}{6}xy^2\)
a: A=yx-4y-5x+20
=y(x-4)-5(x-4)
=(x-4)(y-5)
Khi x=14 và y=5,5 thì A=(14-4)(5,5-5)=0,5*10=5
b: \(B=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)
Khi x=5,2 và y=4,8 thì B=(5,2+4,8)(5,2-5)
=0,2*10=2
d: Khi x=5,75 và y=4,25 thì
D=5,75^3-5,75^2*4,25+4,25^3
=8087/64
c: \(D=xyz-xy-yz-xz+x+y+z-1\)
=xy(z-1)-yz+y-xz+z+x-1
=xy(z-1)-y(z-1)-z(x-1)+(x-1)
=(z-1)(xy-y)-(x-1)(z-1)
=(z-1)(xy-y-1)
=(11-1)(9*10-10-1)
=10*79=790
a: =-1/5x^5y^2
b: =-9/7xy^3
c: =7/12xy^2z
d: =2x^4
e: =3/4x^5y
f: =11x^2y^5+x^6
\(5x\left(4x^2+2x+1\right)-2x\left(10x^2-5x-2\right)\)
\(=20x^3+10x^2+5x-20x^3+10x^2+4x\)
\(=20x^2+9x\)
thay x = 15 ta được
\(20.15^2+9.15=4635\)
câu b tương tự
b) (ko chép lại đề nhé) \(=\frac{x^2\left(x-y\right)^2}{\left(x+y\right)\left(x-y\right)}\cdot\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy\left(x^2-xy+y^2\right)}=\frac{x\left(x-y\right)}{y}\)
Đơn thức đầu tiên trong mẫu của phân thức thứ 2 có lẽ là \(x^3y\)
a Đề sai: )
b
\(a^3-a^2x-ay+xy\\ =a^2\left(a-x\right)-y\left(a-x\right)\\ =\left(a-x\right)\left(a^2-y\right)\)
c
\(4x^2-y^2+4x+1\\ =\left(2x\right)^2+2.2x.1+1-y^2\\ =\left(2x+1\right)^2-y^2\\ =\left(2x+1-y\right)\left(2x+1+y\right)\)
d
\(x^4+2x^3+x^2\\ =x^4+x^3+x^3+x^2\\ =x^3\left(x+1\right)+x^2\left(x+1\right)\\ =\left(x^3+x^2\right)\left(x+1\right)\)
e
\(5x^2-10xy+5y^2-5z^2\\ =5\left(x^2-2xy+y^2-z^2\right)\\ =5\left[\left(x-y\right)^2-z^2\right]\\ =5\left(x-y-z\right)\left(x-y+z\right)\)
c: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
d: =x^2(x^2+2x+1)
=x^2(x+1)^2
e: =5(x^2-2xy+y^2-z^2)
=5[(x-y)^2-z^2]
=5(x-y-z)(x-y+z)
1 ) \(x^2-x-y^2-y=\left(x^2-y^2\right)+\left(-x-y\right)=\left(x+y\right)\left(x-y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
2 ) \(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y+z\right)\left(x-y-z\right)\)
3 ) \(5x-5y+ax-ay=5.\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(5+a\right)\)
4 ) \(a^3-a^2x-ay+xy=a^2.\left(a-x\right)-y.\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)
5 ) \(xy.\left(x+y\right)+yz.\left(y+z\right)+xz.\left(x+z\right)+2xyz\)
\(=xy.\left(x+y\right)+y^2z+yz^2+x^2z+xz^2+xyz+xyz\)
\(=xy.\left(x+y\right)+\left(y^2z+xyz\right)+\left(yz^2+xz^2\right)+\left(x^2z+xyz\right)\)
\(=xy.\left(x+y\right)+yz.\left(x+y\right)+z^2.\left(x+y\right)+xz.\left(x+y\right)\)
\(=\left(x+y\right)\left(xy+yz+z^2+xz\right)=\left(x+y\right)\left[\left(xy+xz\right)+\left(yz+z^2\right)\right]\)
\(=\left(x+y\right)\left[x.\left(y+z\right)+z.\left(y+z\right)\right]=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
\(-5y.\left(x^2-xy+y^2\right)\\ =-5x^2y+5xy^2-5y^3\)