tính
a,A=4+2^2+2^3+2^4+......+2^20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:=5/4-3/4=2/4=1/2
b: =2/3-2/5=10/15-6/15=4/15
c: =10/12-9/12=1/12
d: =4/3-1/4=16/12-3/12=13/12
\(a,\dfrac{20}{16}-\dfrac{3}{4}=\dfrac{5}{4}-\dfrac{3}{4}=\dfrac{2}{4}=\dfrac{1}{2}\\ b,\dfrac{30}{45}-\dfrac{2}{5}=\dfrac{2}{3}-\dfrac{2}{5}=\dfrac{10}{15}-\dfrac{6}{15}=\dfrac{4}{15}\\ c,\dfrac{10}{12}-\dfrac{3}{4}=\dfrac{5}{6}-\dfrac{3}{4}=\dfrac{10}{12}-\dfrac{9}{12}=\dfrac{1}{12}\\ d,\dfrac{12}{9}-\dfrac{1}{4}=\dfrac{4}{3}-\dfrac{1}{4}=\dfrac{16}{12}-\dfrac{3}{12}=\dfrac{13}{12}\)
a: 2 giờ 23 phút+4 giờ 50 phút
=(2 giờ+4 giờ)+(23 phút+50 phút)
=6h73p
=7h13p
b: 12h20p-7h13p
=(12h-7h)+(20p-13p)
=5h7p
c: 2 ngày 12 giờ*3
=6 ngày 36 giờ
=7 ngày 12 giờ
Giải:
a) \(75\%+1,2-2+\dfrac{1}{5}+2018^0\)
=\(\dfrac{3}{4}+\dfrac{6}{5}-2+\dfrac{1}{5}+1\)
=\(\left(\dfrac{6}{5}+\dfrac{1}{5}\right)+\left(\dfrac{3}{4}-2+1\right)\)
=\(\dfrac{7}{5}+\dfrac{-1}{4}\)
=\(\dfrac{23}{20}\)
b) \(\left(\dfrac{-4}{3}+0,75\right):\dfrac{2017}{2018}+\left(1+\dfrac{1}{3}-75\%\right):\dfrac{2017}{2018}\)
=\(\left(\dfrac{-4}{3}+0,75+1+\dfrac{1}{3}-75\%\right):\dfrac{2017}{2018}\)
=\(\left[\left(\dfrac{-4}{3}+1+\dfrac{1}{3}\right)+\left(0,75-75\%\right)\right]:\dfrac{2017}{2018}\)
=\(\left[0+0\right]:\dfrac{2017}{2018}\)
=0\(:\dfrac{2017}{2018}\)
=0
c)\(\left(2018-\dfrac{1}{3}-\dfrac{2}{4}-\dfrac{3}{5}-\dfrac{4}{6}-...-\dfrac{2018}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\)
=\(\left(1-\dfrac{1}{3}-1-\dfrac{2}{4}-1-\dfrac{3}{5}-1-\dfrac{4}{6}-...-1-\dfrac{2018}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\)
=\(\left(\dfrac{2}{3}-\dfrac{2}{4}-\dfrac{2}{5}-\dfrac{2}{6}-...-\dfrac{2}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left[2.\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}-...-\dfrac{1}{2020}\right)\right]:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left\{2.\left[\dfrac{5}{5}.\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}-...-\dfrac{1}{2020}\right)\right]\right\}:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left\{2.\left[5.\left(\dfrac{1}{15}-\dfrac{1}{20}-\dfrac{1}{25}-\dfrac{1}{30}-...-\dfrac{1}{10100}\right)\right]\right\}:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(10.\left(\dfrac{1}{15}-\dfrac{1}{20}-\dfrac{1}{25}-\dfrac{1}{30}-...-\dfrac{1}{10100}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =-10
a) \(\dfrac{-3}{20}\) + \(\dfrac{-7}{4}\) =\(\dfrac{-3}{20}\) + \(\dfrac{-35}{20}\) = -2
b) 6 và \(\dfrac{2}{3}\) - 4 và \(\dfrac{2}{3}\) = 2
c) \(\dfrac{-3}{10}\) + \(\dfrac{7}{12}\) = \(\dfrac{-18}{60}\) + \(\dfrac{35}{60}\) =\(\dfrac{17}{60}\)
d) \(\dfrac{35}{-9}\) . \(\dfrac{81}{7}\) = \(\dfrac{-35}{9}\) . \(\dfrac{81}{7}\) = 45
e) \(\dfrac{-2}{5}\) - \(\dfrac{-3}{4}\) = \(\dfrac{-8}{20}\) - \(\dfrac{-15}{20}\) = \(\dfrac{-8}{20}\) + \(\dfrac{15}{20}\) =\(\dfrac{7}{20}\)
f) \(\dfrac{5}{23}\) . \(\dfrac{7}{26}\) + \(\dfrac{5}{23}\) .\(\dfrac{9}{26}\) = \(\dfrac{5}{23}\) . ( \(\dfrac{7}{26}\) + \(\dfrac{9}{26}\) )= \(\dfrac{5}{23}\) . \(\dfrac{8}{13}\) = \(\dfrac{40}{299}\)
g) \(\dfrac{-3}{12}\) : \(\dfrac{4}{15}\) =\(\dfrac{-3}{12}\) . \(\dfrac{15}{4}\) =\(\dfrac{-5}{8}\)
h) 1 và \(\dfrac{1}{6}\) - 3 và \(\dfrac{1}{3}\) =\(\dfrac{7}{6}\) -\(\dfrac{10}{3}\) = \(\dfrac{-13}{6}\)
i) \(\dfrac{-2}{5}\) . (-3) + \(\dfrac{3}{8}\) . \(\dfrac{4}{-10}\) =(\(\dfrac{-2}{5}\) .\(\dfrac{-4}{10}\)) + [(-3) . \(\dfrac{3}{8}\)
= \(\dfrac{4}{25}\) + \(\dfrac{-9}{8}\) = \(\dfrac{32}{200}\) + \(\dfrac{-225}{200}\) = \(\dfrac{-193}{200}\)
j) \(\dfrac{-13}{17}\) + (\(\dfrac{13}{-21}\) + \(\dfrac{-4}{17}\) )
= ( \(\dfrac{-13}{17}\) + \(\dfrac{-4}{17}\) )+\(\dfrac{-13}{21}\)
= -1+\(\dfrac{-13}{21}\)
= \(\dfrac{-21}{21}\) + \(\dfrac{-13}{21}\) = \(\dfrac{-34}{21}\)
Khôi nguyễn
a) = 6 ngày 5 giờ
b) = \(\dfrac{7}{5}\left(giờ\right)\)
c) = \(\dfrac{55}{3}\left(năm\right)\)
c: \(=\dfrac{3}{2}\cdot1-1-20=\dfrac{3}{2}-21=\dfrac{-39}{2}\)
\(A=\dfrac{x^3}{9y^2}-\dfrac{1}{8}x^2y+\dfrac{2}{15}xy^2\\ B=\dfrac{2a-b}{a+1}-\dfrac{\left(a-1\right)^2}{b-2}\cdot\dfrac{\left(b-2\right)\left(b+2\right)}{\left(a-1\right)\left(a+1\right)}\\ B=\dfrac{2a-b}{a+1}-\dfrac{\left(a-1\right)\left(b+2\right)}{a+1}\\ B=\dfrac{2a-b-\left(a-1\right)\left(b+2\right)}{a+1}\\ B=\dfrac{2a-b-ab-2a+b+2}{a+1}=\dfrac{2-ab}{a+1}\)
\(A=5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9\)
\(A=5\cdot\left(2^2\right)^{15}\cdot\left(3^2\right)^9-2^2\cdot3^{20}\cdot\left(2^3\right)^9\)
\(A=5\cdot2^{30}\cdot3^{18}-2^2\cdot3^{20}\cdot2^{27}\)
\(A=5\cdot2^{30}\cdot3^{18}-2^{29}\cdot3^{20}\)
\(A=2^{29}\cdot3^{18}\cdot\left(5\cdot2^1\cdot1-1\cdot3^2\right)\)
\(A=2^{29}\cdot3^{18}\cdot\left(5-9\right)\)
\(A=-2^2\cdot2^{29}\cdot3^{18}\)
\(A=-2^{31}\cdot3^{18}\)
_______________
\(B=5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6\)
\(B=5\cdot2^9\cdot2^{19}\cdot3^{19}-7\cdot2^{29}\cdot\left(3^3\right)^6\)
\(B=5\cdot2^{28}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}\)
\(B=2^{28}\cdot3^{18}\cdot\left(5\cdot1\cdot3-7\cdot2\cdot1\right)\)
\(B=2^{28}\cdot3^{18}\cdot\left(15-14\right)\)
\(B=2^{28}\cdot3^{18}\)
Ta có: \(A:B\)
\(=\left(-2^{31}\cdot3^{18}\right):\left(2^{28}\cdot3^{18}\right)\)
\(=\left(-2^{31}:2^{28}\right)\cdot\left(3^{18}:3^{18}\right)\)
\(=-2^3\cdot1\)
\(=-8\)
a) A = 4 + 22 + 23 + 24 + ...... + 220
2A = 8 + 23 + 24 + ...... + 220 + 221
2A - A = (8 + 23 + 24 + ...... + 220 + 221) - (4 + 22 + 23 + 24 + ...... + 220)
A = 8 + 221 - 4 - 22
A = 8 + 221 - 4 - 4
A = 221
nhanh nha các bạn ơi