K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

a, B=[(x+3)/(x-3)+(2x^2-6)/(9-x^2)+x/(x+3)]:[(6x-12)/(2x^2-18)]

=[(x+3)/(x-3)+ -(2x^2-6)/(x^2-9)+x/(x+3)]:[(6x-12)/(2x^2-18)]

=[(x+3)/(x-3)+ -(2x^2-6)/(x-3)(x+3)+x/(x+3)]:[(6x-12)/2(x-3)(x+3)]

={[(x+3)^2-2x^2+6+x(x-3)]/(x-3)(x+3)}:[6(x-2)/2(x-3)(x+3)]

=(x^2+6x+9-2x^2+6+x^2-3x)/(x-3)(x+3): 6(x-2)/2(x-3)(x+3)

=3x+15/(x-3)(x+3): 6(x-2)/2(x-3)(x+3)

=3(x+5)/(x-3)(x+3): 6(x-2)/2(x-3)(x+3

=3(x+5)/(x-3)(x+3).2(x-3)(x+3)/6(x-2)

=3(x+5).6/(x-2)

=6(x+5)/6(x-2)

=x+5/x-2

b,Ta thay : x=1

=>x+5/x-2=1+5/1-2=-6

Ta thay : x=-3

=>x+5/x-2=-3+5/-3-2=-2/5

c, Ta co : x+5/x-2=0

x+5=(x-2).0

x+5=0

x=-5

Vậy : x=-5

10 tháng 4 2019

d) \(\frac{x}{-9}=\left(\frac{2}{6}\right)^2\)

\(\Rightarrow\frac{x}{-9}=\frac{2}{6}.\frac{2}{6}\)

\(\Rightarrow\frac{x}{-9}=\frac{4}{36}\)

\(\Rightarrow\frac{x}{-9}=\frac{1}{9}\)

\(\Rightarrow\frac{-x}{9}=\frac{1}{9}\)

\(\Rightarrow-x=1\)

\(\Rightarrow x=1\)

e) \(\frac{a}{b}+\frac{3}{6}=0\)

\(\Rightarrow\frac{a}{b}=0-\frac{3}{6}\)

\(\Rightarrow\frac{a}{b}=0-\frac{1}{2}\)

\(\Rightarrow\frac{a}{b}=\frac{-1}{2}\)

\(\Rightarrow a=-1;b=2\)

22 tháng 1 2020

a) ĐKXĐ: x - 3 \(\ne\)0                                         x \(\ne\)3

             9 - x2 \(\ne\)0                       <=>          x \(\ne\)\(\pm\)3

            x + 3 \(\ne\)0                                       x \(\ne\)-3

      \(\frac{6x-12}{2x^2-18}\) \(\ne\)0                         \(6x-12\ne0\) và \(2x^2-18\ne0\)

     

               x \(\ne\)\(\pm\)3

<=>     \(x\ne2\) và x \(\ne\)\(\pm\)3

<=> x \(\ne\)\(\pm\)3 và x \(\ne\)2

Ta có: B = \(\left(\frac{x+3}{x-3}+\frac{2x^2-6}{9-x^2}+\frac{x}{x+3}\right):\frac{6x-12}{2x^2-18}\)

 B = \(\left(\frac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{2x^2-6}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right):\frac{6\left(x-2\right)}{2\left(x^2-9\right)}\)

B = \(\left(\frac{x^2+6x+9-2x^2+6+x^2-3x}{\left(x-3\right)\left(x+3\right)}\right):\frac{3\left(x-2\right)}{\left(x-3\right)\left(x+3\right)}\)

B = \(\frac{3x+15}{\left(x+3\right)\left(x-3\right)}\cdot\frac{\left(x-3\right)\left(x+3\right)}{3\left(x-2\right)}\)

B = \(\frac{3\left(x+5\right)}{3\left(x-2\right)}\)

B = \(\frac{x+5}{x-2}\)

b) (sai đề)

c) Ta có: B = \(\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)

Để B \(\in\)Z <=> 7 \(⋮\)x - 2 <=> x - 2 \(\in\)Ư(7) = {1; -1; 7; -7}

Lập bảng: 

x - 2   1   -1   7   -7
  x   3 (ktm)  1  9  -5

Vậy ...

25 tháng 1 2020

a) \(\text{ĐKXĐ:}\hept{\begin{cases}x\ne\pm3\\x\ne2\end{cases}}\)

\(B=\left(\frac{x+3}{x-3}+\frac{2x^2-6}{9-x^2}+\frac{x}{x+3}\right):\frac{6x-12}{2x^2-18}\)

\(B=\left[\frac{x+3}{x-3}+\frac{2x^2-6}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right].\frac{2\left(x^2-9\right)}{6\left(x-2\right)}\)

\(B=\left[\frac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{2x^2-6}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right]\)

\(B=\left[\frac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}-\frac{2x^2-6}{\left(x-3\right)\left(x+3\right)}+\frac{x^2-3x}{\left(x-3\right)\left(x+3\right)}\right].\frac{2\left(x^2-9\right)}{6\left(x-2\right)}\)

\(B=\frac{x^2+6x+9-\left(2x^2-6\right)+x^2-3}{\left(x-3\right)\left(x+3\right)}.\frac{2\left(x^2-9\right)}{6\left(x-2\right)}\)

\(B=\frac{3\left(x+5\right)}{\left(x-3\right)\left(x+3\right)}.\frac{2\left(x-3\right)\left(x+3\right)}{6\left(x-2\right)}\)

\(B=\frac{x+5}{x-2}\)

b) Ta có: \(\frac{x+5}{x-2}=1+\frac{7}{x-2}\)

Để B nguyên thì: \(7⋮x-2\)

\(\Rightarrow x-2\inƯ\left(7\right)\)

\(\RightarrowƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta có bảng: 

x - 2-11-77
x13 (loại)-59

Vậy: \(x\in\left\{1;-5;9\right\}\)

\(a,x\ne2;x\ne-2;x\ne0\)

\(b,A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\frac{6}{x+2}\)

\(=\frac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)

\(=\frac{1}{2-x}\)

\(c,\)Để A > 0 thi \(\frac{1}{2-x}>0\Leftrightarrow2-x>0\Leftrightarrow x< 2\)

22 tháng 8 2019

\(Q=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

b.\(Q< 1\)

\(\Leftrightarrow x-\sqrt{x}-2< x-5\sqrt{x}+6\)

\(\Leftrightarrow4\sqrt{x}-8< 0\)

\(\Leftrightarrow0\le x< 4\)

Vay de Q<1 thi \(0\le0< 4\)

5 tháng 10 2019

a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)

b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)

\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)