(25+x)+3.4=7.3^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
1.
$3^{x+2}+4.3^{x+1}=7.3^6$
$3^{x+1}.3+4.3^{x+1}=7.3^6$
$3^{x+1}(3+4)=7.3^6$
$3^{x+1}.7=7.3^6$
$\Rightarrow 3^{x+1}=3^6$
$\Rightarrow x+1=6$
$\Rightarrow x=5$
2.
$5^{x+4}-3.5^{x+3}=2.5^{11}$
$5^{x+3}.5-3.5^{x+3}=2.5^{11}$
$5^{x+3}(5-3)=2.5^{11}$
$2.5^{x+3}=2.5^{11}$
$\Rightarrow 5^{x+3}=5^{11}$
$\Rightarrow x+3=11$
$\Rightarrow x=8$
3.
$4^{x+3}-3.4^{x+1}=13.4^{11}$
$4^{x+1}.4^2-3.4^{x+1}=13.4^{11}$
$4^{x+1}.16-3.4^{x+1}=13.4^{11}$
$13.4^{x+1}=13.4^{11}$
$\Rightarrow 4^{x+1}=4^{11}$
$\Rightarrow x+1=11$
$\Rightarrow x=10$
Bài 1:
a) \(4^{x+2}+4^x=68\)
\(\Rightarrow4^x\cdot\left(4^2+1\right)=68\)
\(\Rightarrow4^x\cdot17=68\)
\(\Rightarrow4^x=\dfrac{68}{17}\)
\(\Rightarrow4^x=4\)
\(\Rightarrow4^x=4^1\)
\(\Rightarrow x=1\)
b) \(5\cdot2^{x+4}-3\cdot2^x=308\)
\(\Rightarrow2^x\cdot\left(5\cdot2^4-3\right)=308\)
\(\Rightarrow2^x\cdot\left(5\cdot16-3\right)=308\)
\(\Rightarrow2^x\cdot77=308\)
\(\Rightarrow2^x=\dfrac{308}{77}\)
\(\Rightarrow2^x=4\)
\(\Rightarrow2^x=2^2\)
\(\Rightarrow x=2\)
c) \(4\cdot3^{x+1}+7\cdot3^x=513\)
\(\Rightarrow3^x\cdot\left(4\cdot3+7\right)=513\)
\(\Rightarrow3^x\cdot19=513\)
\(\Rightarrow3^x=\dfrac{513}{19}\)
\(\Rightarrow3^x=27\)
\(\Rightarrow3^x=3^3\)
\(\Rightarrow x=3\)
d) \(5^{x+4}-5^x=3120\)
\(\Rightarrow5^x\cdot\left(5^4-1\right)=3120\)
\(\Rightarrow5^x\cdot\left(625-1\right)=3120\)
\(\Rightarrow5^x\cdot624=3120\)
\(\Rightarrow5^x\cdot\dfrac{3120}{624}\)
\(\Rightarrow5^x=5\)
\(\Rightarrow5^x=5^1\)
\(\Rightarrow x=1\)
f) \(3\cdot4^{2x+1}-16^x=2816\)
\(\Rightarrow3\cdot4^{2x+1}-\left(4^2\right)^x=2816\)
\(\Rightarrow3\cdot4^{2x+1}-4^{2x}=2816\)
\(\Rightarrow4^{2x}\cdot\left(3\cdot4-1\right)=2816\)
\(\Rightarrow4^{2x}\cdot11=2816\)
\(\Rightarrow4^{2x}=\dfrac{2816}{11}\)
\(\Rightarrow4^{2x}=256\)
\(\Rightarrow\left(2^2\right)^{2x}=2^8\)
\(\Rightarrow2^{4x}=2^8\)
\(\Rightarrow4x=8\)
\(\Rightarrow x=2\)
Bài 2:
\(2^x+124=5^y\)
\(\Rightarrow5^y-2^x=124\)
\(\Rightarrow5^y-2^x=125-1\)
\(\Rightarrow\left\{{}\begin{matrix}5^y=125\\2^x=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5^y=5^3\\2^x=2^0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=3\\x=0\end{matrix}\right.\)
Vậy: ....
\(7.3^x+20.3^x=3^{25}\Rightarrow3^x\left(7+20\right)=3^{25}\)
\(\Rightarrow3^x.3^3=3^{25}\Rightarrow3^x=3^{22}\Rightarrow x=22\)
\(7\cdot3^x+20\cdot3^x=3^{25}\)
\(3^x\cdot\left(20+7\right)=3^{25}\)
\(3^x\cdot27=3^{25}\)
\(3^x\cdot3^3=3^{25}\)
\(3^x=3^{25}:3^3\)
\(3^x=3^{22}\)
\(x=22\)
Đề có phải như thế này không vậy bạn?
\(3^{x+2}+4\cdot3^{x+1}=7\cdot3^6\)
\(3\cdot3^{x+1}+4\cdot3^{x+1}=7\cdot3^6\)
\(\left(3+4\right)\cdot3^{x+1}=7\cdot3^6\)
\(7\cdot3^{x+1}=7\cdot3^6\)
x + 1 = 6
x = 6 - 1 = 5
Vậy x = 5
a, \(4^7.3^4.9^6:6^{13}\)
\(=\left(2^{14}.3^4.3^{12}\right):\left(2^{13}.3^{13}\right)\)
\(=2^{14}:2^{13}.3^{16}:3^{13}\)
\(=2.3^3=54\)
b, \(2^3.3^2-5^{16}:25^7\)
\(=72-5^{16}:5^{14}\)
\(=72-5^2=47\)
`(25+x)+3.4=7.3^2`
`(25+x)+12=63`
`25+x=63-12=51`
`x=51-25=26`