K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

x=+-1 là nghiệm cần tìm

với x khác +-1

hiển nhiên khi x>0 x-1<x^2-2

với x=-2<=> -3/2 loại

Hiển nhiên với x<-2 thì x-1<x^2-2 không thể chia hết

KL: x=+-1

16 tháng 8 2023

(a) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{x^2-5x+9}{x-3}\in Z\)

Ta có: \(\dfrac{x^2-5x+9}{x-3}\left(x\ne3\right)=\dfrac{x\left(x-3\right)-2\left(x-3\right)+3}{x-3}=x-2+\dfrac{3}{x-3}\)nguyên khi và chỉ khi: \(\left(x-3\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\\x-3=3\\x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\\x=6\\x=0\end{matrix}\right.\) (thỏa mãn).

Vậy: \(x\in\left\{0;2;4;6\right\}\).

 

(b) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{2x^3-x^2+6x+2}{2x-1}\in Z\left(x\ne\dfrac{1}{2}\right)\)

Ta có: \(\dfrac{2x^3-x^2+6x+2}{2x-1}=\dfrac{x^2\left(2x-1\right)+3\left(2x-1\right)+5}{2x-1}=x^2+3+\dfrac{5}{2x-1}\)

nguyên khi và chỉ khi: \(\left(2x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=1\\2x-1=-1\\2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\x=3\\x=-2\end{matrix}\right.\) (thỏa mãn).

Vậy: \(x\in\left\{-2;0;1;3\right\}\).

a: f(x) chia hết cho g(x)

=>x^2-3x-2x+6+3 chia hết cho x-3

=>3 chia hết cho x-3

=>x-3 thuộc {1;-1;3;-3}

=>x thuộc {4;2;6;0}

b: f(x) chia hết cho g(x)

=>2x^3-x^2+6x-3+5 chia hết cho 2x-1

=>5 chia hết cho 2x-1

=>2x-1 thuộc {1;-1;5;-5}

=>x thuộc {2;0;3;-2}

c) Ta có: \(P=x^3+y^3+6xy\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+6xy\)

\(=\left(x+y\right)^3-3xy\left(x+y-2\right)\)

\(=2^3=8\)

6 tháng 2 2018

Vì x,y là số nguyên dương mà \(x+1⋮y\)nên \(x+1\ge y\)(1)

Suy ra \(x+3\ge y+2\)(1)

Mặt khác \(y+2⋮x\)nên \(y+2\ge x\)(2)

Từ (1) và (2) suy ra \(x\le y+2\le x+3\)

Suy ra \(y+2=x\)hoặc \(y+2=x+1\)hoặc \(y+2=x+2\)hoặc \(y+2=x+3\) 

+Với \(y+2=x\)mà \(x+1⋮y\)nên \(3⋮y\)mà y là số nguyên dương nên y = 1 hoặc y = 3

Nếu y = 1 thì x =3 ( thoả mãn )

Nếu y = 3 thì x = 5 ( thoả mãn )

+ Với \(y+2=x+1\)mà \(x+1⋮y\)nên \(y+2⋮y\)nên \(2⋮y\)mà y là số nguyên dương nên y =1 hoặc y =2

Nếu y =1 thì x = 2 ( không thoả mãn )

Nếu y = 2 thì x =3 ( không thoả mãn )

+Với \(y+2=x+2\)mà \(y+2⋮x\)nên \(y+2⋮y\)nên \(2⋮y\)mà y là số nguyên dương nên y = 1 hoặc y =2

Nếu y = 1 thì x= 1 ( thoả mãn )

Nếu y =2 thì x = 2 ( không thoả mãn )

+Với \(y+2=x+3\)mà \(y+2⋮x\)nên \(x+3⋮x\)nên \(3⋮x\)mà x là số nguyên dương nên x =1 hoặc x = 3

Nếu x = 1 thì y = 2 ( thoả mãn )

Nếu x = 3 thì y = 4 ( thoả mãn )

Kết luận....

\(⋮\)x-1

=>x-1\(\in\)Ư(1)={-1;1}

Ta có bảng:

x-1-11
x1\(\in\)Z2\(\in\)Z

Vậy các số nguyên x \(\in\){0;2}

b)2\(⋮\)x

=>x\(\in\)Ư(2)={-1;-2;1;2}

Vậy x\(\in\){-1;-2;1;2}

Chúc bn học tốt

16 tháng 1 2020

                                                      Bài giải

a, Ta có :

\(1⋮\left(x-1\right)\text{ }\Rightarrow\text{ }x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow\orbr{\begin{cases}x-1=-1\\x-1=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(\Rightarrow\text{ }x\in\left\{0\text{ ; }2\right\}\)

b, \(2\text{ }⋮\text{ }x\)

\(\Rightarrow\text{ }x\inƯ\left(2\right)=\left\{\pm1\text{ ; }\pm2\right\}\)

Vậy \(x\in\left\{\pm1\text{ ; }\pm2\right\}\)

12 tháng 12 2018

x^4 -x ^3 + 6x^2 - x + n x^2-x+5 x^2+1 - x^4-x^3+5x^2 x^2-x+n - x^2-x+n 0

ĐỂ x4 - x3 + 6x2 -x \(⋮x^2-x+5\)

\(\Rightarrow x-5=0\Rightarrow x=5\)

12 tháng 12 2018

b , ta có : \(3x^3+10x^2-5⋮3x+1\)

\(\Rightarrow3x^3+x^2+9x^2+3x-3x-1-4⋮3x+1\)

\(\Rightarrow x\left(3x+1\right)+3x\left(3x+1\right)-\left(3x+1\right)-4⋮3x+1\)

mà : \(\left(3x+1\right)\left(4x-1\right)⋮3x+1\)

\(\Rightarrow4⋮3x+1\Rightarrow3x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Nếu : 3x + 1 = 1 => x = 0 ( TM ) 

    3x + 1 = -1 => x = -2/3 ( loại ) 

    3x + 1 = 2 => x = 1/3 ( loại ) 

  3x + 1 = -2 => x = -1 ( TM ) 

 3x + 1 = 4 => x = 1 ( TM ) 

3x + 1 = -1 => x = -5/3 ( loại ) 

\(\Rightarrow x\in\left\{0;\pm1\right\}\)

26 tháng 8 2016

Câu 1: 

Ta có: 1/  x + 14 chia hết cho 7 mà 14 chia hết cho 7  => x chia hết cho 7  => x \(\in\)B (7)

2/   x - 16 chia hết cho 8 mà 16 chia hết cho 8  => x chia hết cho 8  => x \(\in\)B (8)

3/   54 + x chia hết cho 9 mà 54 chia hết cho 9  => x chia hết cho 9  => x \(\in\)B (9)

Từ 1/ ; 2/ ; 3/ ta có: x \(\in\)BC (7 ; 8 ; 9)

Mà: x bé nhất  => x = BCNN (7 ; 8 ; 9) = 504

Vậy x = 504 

6 tháng 1 2016

mình cần cách trình bày vì cô giáo chưa dạy mình cách trình bày dạng này