Parabol y= (2m-1)x2 nghịch biến với x>0 khi m<....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đồng biến khi a=(2m+3) >0
nghịch biến khi a=(2m+3) <0
rồi tính ra là ra m
đúng ko ạ
a/ Để hàm số đồng biến khi x>0
\(\Leftrightarrow1-2m>0\Rightarrow m< \frac{1}{2}\)
b/ Để hàm số nghịch biến khi x>0
\(\Leftrightarrow4m^2-9< 0\Leftrightarrow-\frac{3}{2}< m< \frac{3}{2}\)
c/ Để hàm số đồng biến khi x<0
\(\Leftrightarrow m^2-3m< 0\Leftrightarrow0< m< 3\)
d/ Do \(m^2-2m+3=\left(m-1\right)^2+2>0\) ;\(\forall m\)
\(\Rightarrow\) Hàm số đồng biến khi x>0 với mọi m
a.
Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)
b.
Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)
\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)
c.
Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)
\(\Rightarrow m>-\dfrac{3}{2}\)
a) Để hàm số đạt giá trị nhỏ nhất bằng 0 khi x=0 thì 2m-1>0
\(\Leftrightarrow2m>1\)
hay \(m>\dfrac{1}{2}\)
b) Để hàm số đồng biến khi x<0 và nghịch biến khi x>0 thì 2m-1<0
\(\Leftrightarrow2m< 1\)
hay \(m< \dfrac{1}{2}\)
\(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{-3x_1^2+3x_2^2}{x_1-x_2}=-3\left(x_1+x_2\right)\)
Khi x1<0; x2<0 thì x1+x2<0
=>A>0
=>Hàm số đồng biến
Khi x1>0; x2>0 thì x1+x2>0
=>A<0
=>hàm số nghịch biến
khi 2m-1<0 <=> 2m<1 <=>m<1/2