K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lời giải:

$3^{n+3}+3^{n+1}+3^{n+3}+2^{n+2}$

$=2.3^{n+3}+3^{n+1}+2^{n+2}$

$=3^{n+1}(2.3^2+1)+2^{n+2}=3^{n+1}.19+2^{n+2}$

Ta thấy $3^{n+1}.19\vdots 3; 2^{n+2}\not\vdots 3$

$\Rightarrow 3^{n+3}+3^{n+1}+3^{n+3}+2^{n+2}\not\vdots 3$

$\Rightarrow 3^{n+3}+3^{n+1}+3^{n+3}+2^{n+2}\not\vdots 6$

Đề sai. Bạn xem lại nhé.

11 tháng 10 2023

B = 3ⁿ⁺³ + 2ⁿ⁺³ + 3ⁿ⁺¹ + 2ⁿ⁺²

= (3ⁿ⁺³ + 3ⁿ⁺¹) + (2ⁿ⁺³ + 2ⁿ⁺²)

= 3ⁿ⁺¹.(3² + 1) + 2(2ⁿ⁺² + 2ⁿ⁺¹)

= 3ⁿ⁺¹.10 + 2.(2ⁿ⁺² + 2ⁿ⁺¹)

= 2.3ⁿ⁺¹.5 + 2.(2ⁿ⁺² + 2ⁿ⁺¹)

= 2.(3ⁿ⁺¹.6 + 2ⁿ⁺² + 2ⁿ⁺¹) ⋮ 2 (1)

B = (3ⁿ⁺³ + 3ⁿ⁺¹) + (2ⁿ⁺³ + 2ⁿ⁺²)

= 3.(3ⁿ⁺² + 3ⁿ) + 2ⁿ⁺².(2 + 1)

= 3.(3ⁿ⁺² + 3ⁿ) + 2ⁿ⁺².3

= 3.(3ⁿ⁺² + 3ⁿ + 2ⁿ⁺²) ⋮ 3 (2)

Từ (1) và (2) ⇒ B ⋮ 6

11 tháng 10 2023

Mng ơi giúp mình với ạ

18 tháng 8 2023

1) 3n ⋮ 2n - 5

=> 2(3n) - 3(2n - 5)  ⋮ 2n - 5

=> 6n - 6n + 15 ⋮ 2n - 5

=> 15 ⋮ 2n - 5

=> 2n-5 ϵ Ư(15)

Ư(15) = {1;-1;3;-3;5;-5;15;-15}

=> n={3;2;4 ;1;5;0;10;-5}

18 tháng 8 2023

nhớ nha

 

25 tháng 12 2015

 n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2) 
số chia hết cho 6 là số chia hết cho 2 và 3 
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n 
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n 
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

28 tháng 10 2020

a) 3n + 8 \(⋮\)2n + 1 

=> 2.(3n + 8) \(⋮\)2n + 1 

=> 3.(2n + 1 )  + 13 \(⋮\)2n + 1 

=> 13 \(⋮\)2n + 1 

=> 2n + 1 = 13 hoặc 2n + 1 = 1 

<=> n = 6 hoặc n = 0 

Vậy n = 6 hoặc n = 0 

b) n2 + 3n + 6 chia hết cho n + 3 

=> n ( n+3) + 6 chia hết cho n + 3 

=> 6 chia hết cho n + 3 

=> n + 3 \(\in\)Ư(6) = { 1; 2; 3; 6}

=> n \(\in\){ 0; 3}

9 tháng 1 2016

1) 2n+7=2(n+1)+5

để 2n+7 chia hết cho n+1 thì 5 phải chia hết cho n+1

=> n+1\(\in\) Ư(5) => n\(\in\){...............}

bạn tự tìm n vì mình chưa biết bạn có học số âm hay chưa

Từ bài 2-> 4 áp dụng như bài 1

4 tháng 1 2021

Ta có 2n+7=2(n+1)+5

Vì 2(n+1

Do đó 2n + 7=2(n+1)+5 khi 5 chí hết cho n +1

Suy ra n+1 "thuộc tập hợp" Ư (5) = {1;5}

Lập bảng n+1 I 1 I 5

                  n   I 0 I 4

Vậy n "thuộc tập hợp" {0;4}

30 tháng 12 2024

a;   (2n + 1) ⋮ (6  -n)

     [-2.(6 - n) + 13] ⋮ (6 - n)

                        13 ⋮ (6 - n)

       (6 - n) ϵ  Ư(13) = {-13; -1; 1; 13}

        Lập bảng ta có:

6 - n -13 -1 1 13
n 19 7 5 -7
n ϵ Z  tm tm tm tm

Theo bảng trên ta có: n ϵ {19; 7; 5; -7} 

Vậy các giá trị nguyên của n thỏa mãn đề bài là:

n ϵ {19; 7; 5; -7} 

   

 

 

30 tháng 12 2024

b; 3n ⋮ (5  - 2n)

   6n ⋮ (5  - 2n)

  [15 - 3(5 - 2n)] ⋮ (5  - 2n)

     15 ⋮ (5  -2n) 

  (5  - 2n) ϵ Ư(15) = {-15; -1; 1; 15}

Lập bảng ta có:

5 - 2n -15 -1 1 15
n 10 3 2 -5
n ϵ Z tm tm tm tm

  Theo bảng trên ta có: n ϵ {10; 3; 2; -5}

Vậy các giá trị nguyên n thỏa mãn đề bài là:

n ϵ {-5; 2; 3; 10}

 

11 tháng 12 2016

cậu t đi

11 tháng 12 2016

\(5^{2016}\) ?