K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2023

Trung bình 1 cạnh của hìn tam giác trên dài là : (7 + 9 + 11) : 3 = 9(cm)

Đ/số:...

6 tháng 12 2023

Trung một cạnh dài là:

(7+9+11):3=9(cm)

Đáp số:9 cm

AH
Akai Haruma
Giáo viên
15 tháng 9 2024

Lời giải:

Vì $9^2+12^2=15^2$ nên theo định lý Pitago đảo thì tam giác ABC là tam giác vuông có độ dài 2 cạnh góc vuông là $9$ cm và $12$ cm.

Diện tích tam giác ABC:

$9.12:2=54$ (cm2)

2 tháng 3 2016

bé nhất là 0

lớn nhất là 99999999999999999999999

10 tháng 4 2018

Ta có 92 = 81 ; 152 =225 ; 122 =144

Mà 225 = 144 + 81

Nên Theo định lí Py – ta – go đảo, tam giác có độ dài 3 cạnh 9cm ,12cm ,15cm là tam giác vuông.

Bài 2: Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.Tính độ dài đoạn BC.Bài 3: Bộ ba độ dài cho sau có thể là độ dài ba cạnh của một tam giác vuông không? Vì sao?a) 5cm, 12cm, 9cm                                     b) 12 cm, 16 cm, 20 cmBài 4: Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh  AC, điểm E thuộc cạnh AB sao cho AD = AE.a)     Chứng minh: ΔABD = ΔACE. Bài 5: Cho ∆ABC...
Đọc tiếp

Bài 2: Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.Tính độ dài đoạn BC.

Bài 3: Bộ ba độ dài cho sau có thể là độ dài ba cạnh của một tam giác vuông không? Vì sao?

a) 5cm, 12cm, 9cm                                     b) 12 cm, 16 cm, 20 cm

Bài 4: Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh  AC, điểm E thuộc cạnh AB sao cho AD = AE.

a)     Chứng minh: ΔABD = ΔACE.

 

Bài 5: Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC tại D, DN⊥BC tại N.

a)     Chứng minh ∆DBA = ∆DBN. So sánh DA và DN.

b)    Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh AM = NC

c)     Chứng minh ∆BMC cân.

 

Bài 10: Cho ΔABC vuông tại A, M là trung điểm của BC

a)     Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB.

b)    Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh rằng ΔMAC = ΔMBD

c)     Chứng minh AB // CD.                                   

d)    Chứng minh:

Bài 11: Cho tam giác ABC có BA < BC và

a)Trên BC lấy điểm M sao cho BM = BA. Chứng minh tam giác ABM đều.

b)Tia phân giác góc B cắt AC tại D. Chứng minh: ΔBAD = ΔBMD.

c)Tia MD cắt tia BA tại H, chứng minh ΔDHC cân.

Bài 12 : Cho tam giác ABC cân tại A, trên cạnh AB và AC lần lượt lấy hai điểm E và D sao cho AD = AE, BD cắt CE tại G. Chứng minh rằng:

a) BD = CE.                                                        

b) Tam giác GDE cân.

c) Gọi M là trung điểm của BC. Chứng minh ba điểm A, G, M thẳng hàng.

d) Cho AB = 8 cm; MB = 5 cm. Tính độ dài AM?

1

2: BC=căn 6^2+8^2=10cm

3:

a: 5cm; 12cm; 9cm

5+12>9; 5+9>12; 12+9>5

=>Bộ ba số này thỏa mãn độ dài 3 cạnh của 1 tam giác

b: 12+16>20; 12+20>16; 20+16>12

=>Bộ ba số này thỏa mãn độ dài 3 cạnh của 1 tam giác

4:

Xét ΔABD và ΔACE có

AB=AC

góc BAD chung

AD=AE
=>ΔABD=ΔACE

10:

a: AB=căn 10^2-6^2=8cm

b: Xét ΔMAC và ΔMDB có

MA=MD

góc AMC=góc DMB

MC=MB

=>ΔMAC=ΔMDB

c: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hbh

=>AB//CD
 

Bài làm

Xét tam giác ABC có:

\(\widehat{F}=\widehat{G}=\widehat{H}\)

Ta có: \(\widehat{F}+\widehat{G}+\widehat{H}=180^0\)

Hay \(\widehat{F}=\widehat{G}=\widehat{H}=\frac{180^0}{3}=60^0\)

=> Tam giác ABC là tam giác đều.

Mà GH = 9cm. => GH = GF = FH = 9cm.

Chu vi tam giác ABC là: 9 + 9 + 9 = 27 ( cm )

Vậy chu vi tam giác ABC là 27 cm.

# Học tốt #

10 tháng 4 2020

Vì tam giác FGH có góc F= góc G= góc H

Suy ra : tam giác FGH là tam giác đều

Suy ra: GH=HF=FG

Mà GH=9cm. Suy ra : Chu vi tam giác FGH là: 9+9+9= 27(cm)

4 tháng 5 2018

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Vì tam giác \(ABC\) đồng dạng với tam giác \(A'B'C'\) nên tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\). Do đó, \(\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

Thay số, \(\frac{{A'B'}}{4} = \frac{{B'C'}}{9} = \frac{{A'C'}}{6}\). Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{{A'B'}}{4} = \frac{{B'C'}}{9} = \frac{{A'C'}}{6} = \frac{{A'B' + B'C' + A'C'}}{{4 + 6 + 9}} = \frac{{66,5}}{{19}} = 3,5\)

Ta có:

\(\left\{ \begin{array}{l}\frac{{A'B'}}{4} = 3,5 \Rightarrow A'B' = 3,5.4 = 14\\\frac{{A'C'}}{6} = 3,5 \Rightarrow A'C' = 3,5.6 = 21\\\frac{{B'C'}}{9} = 3,5 \Rightarrow B'C' = 3,5.9 = 31,5\end{array} \right.\)

Vậy \(A'B' = 14cm,A'C' = 21cm,B'C' = 31,5cm\).

9 tháng 7 2019

Chọn D