K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

ab-ac+bc-c2=b(a+c)-c(a+c)=(b-c)(a+c)

=>\(\orbr{\begin{cases}b=c+1,a=-1-c\\b=c-1,a=1-c\end{cases}}\)

\(\Leftrightarrow\frac{a}{b}=-1\)

3 tháng 6 2017

các số  lẻ có 3 chữ số là 101 - 999

số lẻ chia 5 dư 2 là 107, 117, 127,......997 ( có chữ số tận cùng là 7)

các số tự nhiên lẻ có 3 chữ số mà mỗi số chia cho 5 dư 2 là

(997 - 107) :10 + 1 = 90 số

28 tháng 1 2017

Theo đề bài ta có:

a + b = -8

b + c = -6

c + a = 16

\(\Rightarrow\)(a + b) + (b + c) + (c + a) = (-8) + (-6) + 16 = 2

Mà (a + b) + (b + c) + (c + a) = a + b + b + c + c + a = 2a + 2b + 2c =2(a+b+c)

\(\Rightarrow a+b+c=2\div2=1\)

\(\Rightarrow a=\left(a+b+c\right)-\left(b+c\right)=1-\left(-6\right)=7\)

\(\Rightarrow b=\left(a+b+c\right)-\left(c+a\right)=1-16=-15\)

\(\Rightarrow c=\left(a+b+c\right)-\left(a+b\right)=1-\left(-8\right)=9\)

Vậy a = 7; b = -15; c = 9

4 tháng 2 2017

cảm ơn nhìu

9 tháng 7 2017

bình phương là x2 nhe cu lay 02=0 cu the nhan len den 20 ban nhe 

\(a^2-2ab+b^2=\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow2\left(a^2+b^2\right)>\left(a+b\right)^2\)

\(a^2+b^2=a+b\Rightarrow2\left(a+b\right)\ge\left(a+b\right)^2\Rightarrow a+b\le2\)

Lại có : \(S=\frac{a}{a+1}+\frac{b}{b+1}=1-\frac{1}{a+1}+1-\frac{1}{b+1}=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)

Áp dụng bất đẳng thức Svac - sơ ta có :

\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+1+b+1}=\frac{4}{a+b+2}\ge1\)

Vì vậy S = \(2-\left(\frac{a}{a+1}+\frac{b}{b+1}\right)\le2-1=1\)

=> Smax =1

Dấu = xảy ra khi a = b = 1