cho a+b+c=2p
chứng minh a^2-b^2-c^2+2abc=4(p-b)(p-c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề : CMR : \(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
Ta có : \(VT=2bc+b^2+c^2-a^2\)
\(=\left(b+c\right)^2-a^2\)
\(=\left(b+c-a\right)\left(b+c+a\right)\)
\(=\left(b+c+a-2a\right).2p\)
\(=\left(2p-2a\right).2p\)
\(=4p^2-4ap\)
\(=4p\left(p-a\right)=VP\left(đpcm\right)\)
anh là giởi nhất bảng sếp hạng mà còn ko làm được thì ai làm được
\(a+b+c=2p\Rightarrow a=2p-b-c\)
Ta có:
\(a^2-b^2-c^2+2bc=a^2-\left(b-c\right)^2=\left(a-b+c\right)\left(a+b-c\right)\)
\(=\left(2p-b-c-b+c\right)\left(2p-b-c+b-c\right)\)
\(=\left(2p-2b\right)\left(2p-2c\right)\)
\(=4\left(p-b\right)\left(p-c\right)\)
do a,b,c là 3 cạnh của tam giác nên:
c<a+b => 2c<a+b+c => 2c<2 => c<1
Tương tự ta cm được a<1; b<1
vì a<1 => 1-a >0
b<1 => 1-b >0
c<1 => 1-c>0
=> (1-a)(1-b)(1-c) > 0
=> 1- (a+b+c) +ab+bc+ac-abc >0
=>ab+ac+bc-1>abc (a+b+c=0, chuyển vế đổi dấu)
=>2ab+2ac+2bc-2>2abc
Vậy a2+b2+c2+2abc < a2+b2+c2+2ab+2ac+2bc-2= (a+b+c)2-2=4-2=2
Vậy => dpcm
ta có: a,b,c là 3 cạnh của 1 tam giác
=> a+b >c => a+b +c > 2c => 2 > 2c => c < 1
tương tự: a<1; b<1
=> (1-a).(1-c).(1-b) > 0
=> (1-a).(1-b-c+cb) >0
=> 1 -b -c + cb -a +ab +ac -abc >0
=> 1 + cb + ab +ac > b+c+a +abc
=> cb +ab +ac > 2 +abc -1
=> cb +ab +ac > 1+abc
=> 2cb +2ab +2ac > 2 +2abc
=> a2 + b2 + c2 + 2cb +2ab +2ac - 2 > 2abc + a2 + b2 +c2
=> (a+b+c)2 -2 > 2abc +a2 + b2 +c2
=> 22 - 2 > 2abc+ a2 + b2 + c2
=> a2 + b2 +c2 < 2 (đpcm)
Ta có:a,b,c là 3 cạnh của 1tam giác
\(\Rightarrow a+b>c\)
\(\Rightarrow a+b+c>2c\)
\(\Rightarrow2>2c\)
\(\Rightarrow c< 1\)
tương tự:\(a< 1;b< 1\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)
\(\Rightarrow\left(1-a\right)\left(1-b-c+ab\right)>0\)
\(\Rightarrow1-b-c+cb-a+ab+ac-abc>0\)
\(\Rightarrow1+bc+ab+ac>a+b+c+abc\)
\(\Rightarrow ab+ac+bc>2+abc-1\)
\(\Rightarrow ab+bc+ac>1+abc\)
\(\Rightarrow2bc+2ab+2ac>2+2abc\)
\(\Rightarrow a^2+b^2+c^2+2bc+2ab+2ac-2>2abc+a^2+b^2+c^2\)
\(\Rightarrow\left(a+b+c\right)^2-2>2abc+a^2+b^2+c^2\)
\(\Rightarrow2^2-2>2abc+a^2+b^2+c^2\)
\(\Rightarrow a^2+b^2+c^2+2abc< 2\left(đpcm\right)\)
Ta có a < b + c; b < c + a; c < a + b nên từ a + b + c = 2 suy ra a, b, c < 1.
BĐT cần cm tương đương:
\(\left(a+b+c\right)^2+2abc< 2\left(ab+bc+ca\right)+2\)
\(\Leftrightarrow abc-\left(ab+bc+ca\right)+1< 0\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)< 0\).
Bất đẳng thức trên luôn đúng do a, b, c < 1.
Vậy ta có đpcm.
dễ mà ?
Theo BĐT Cauchy cho 2 số ta có :
\(b^2+c^2\ge2bc< =>\frac{a^2}{b^2+c^2}\le\frac{a^3}{2abc}\)
Tương tự ta được :\(\frac{b^2}{c^2+a^2}\le\frac{b^3}{2abc}\) ; \(\frac{c^2}{a^2+b^2}\le\frac{c^3}{2abc}\)
Cộng theo vế các bất đẳng thức cùng chiều :
\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\le\frac{a^3+b^3+c^3}{2abc}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
Vậy ta có điều phải chứng minh