Tổng các số của các chữ số có 2 chữ số = 10. Nếu thay đổi thứ tự các chữ số đó thì đc số mới nhỏ hơn số ban đầu là 36 đơn vị. Tìm số ban đầu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gọi hai chữ số càn tìm là : \(\overline{xy}\left(x,y\in N,0\le x,y< 10\right)\)
Ta có : Số đó gấp 4 lần tổng các chữ số của nó .
=> 10x + y = 4 ( x + y )
=> 10x + y - 4x - 4y = 6x - 3y = 0 ( I )
Lại có : Nếu viết hai chữ số của nó theo thứ tự ngược lại thì đc số mới lớn hơn số ban đầu 36 đơn vị .
=> \(\overline{xy}+36=\overline{yx}\)
=> 10x + y + 36 = 10y + x
=> 9y - 9x = 36 ( II )
- Kết hợp ( I ) và ( II ) ta được hệ phương tình : Giai ( I ) và ( II ) ta được :
\(\left\{{}\begin{matrix}x=4\\y=8\end{matrix}\right.\)
Vậy chữ số cần tìm là 48 .
làm sao để viết có dấu gạch ngang trên đầu vậy bạn?
Gọi số tự nhiên đó là ab (ab >10). Theo đề bài ta có :
Số đó gấp 4 lần tổng các chữ số của nó nên ta có phương trình:
\(ab=4\left(a+b\right)\Leftrightarrow10a+b=4a+4b\) \(\Leftrightarrow10a-4a+b-4b=0\Leftrightarrow6a-3b=0\) ⇔ 2a-b=0(1)
Nếu viết 2 chữ số của nó theo thứ tự ngược lại thì được số mới lớn hơn số ban đầu 36 đơn vị nên ta có phương trình :
\(ba-ab=36\Leftrightarrow10b+a-10a-b=36\)
\(\Leftrightarrow9b-9a=36\Leftrightarrow b-a=4\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}2a-b=0\left(1\right)\\b-a=4\left(2\right)\end{matrix}\right.\)
Cộng từng vế của (1) và (2) ta được : a=4 Thay vào (2) ta được:
\(b-4=4\Leftrightarrow b=8\) ⇒ab=48. Vậy...
Gọi số đó có dạng \(\overline{xy}=10x+y\) với x;y là các số tự nhiên từ 1 tới 9
Do số đó gấp 4 lần tổng các chữ số của nó nên ta có:
\(10x+y=4\left(x+y\right)\Rightarrow2x-y=0\)
Khi viết ngược số đó ta được số mới có giá trị là: \(10y+x\)
Do số mới lớn hơn số ban đầu 36 đơn vị nên:
\(10y+x-\left(10x+y\right)=36\Rightarrow y-x=4\)
Ta được hệ: \(\left\{{}\begin{matrix}2x-y=0\\y-x=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=8\end{matrix}\right.\)
Vậy số đó là 48
gxdgd