cho A =\(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)......\left(\frac{1}{100^2}-1\right)\)
hãy so sánh A với -1/2
tớ cầu xin các cậu cũng như các thầy cô olm giải hộ, tớ cần rất gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:A=\(\frac{-3}{2^2}.\frac{-8}{3^2}....\frac{-9999}{100^2}\)
A có 99 thừa số âm
=>A<0
\(=>-A=\frac{3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}....\frac{99.101}{100.100}\)
=>\(-A=\frac{101}{100.2}=\frac{101}{200}>\frac{100}{200}=\frac{1}{2}=>-A>\frac{1}{2}=>A<-\frac{1}{2}\)
tick nhé
A>1/2
Xin lỗi mình đang bận để lúc khác mình sẽ giải chi tiết
A=\(\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}...\frac{1-100^2}{100^2}\)
trong biểu thức trên có 99 số âm nên tích sẽ âm nên ta có thể viết lại như sau:
A=-\(\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\),
Chú ý: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
do vậy: A=-\(\frac{1.3}{2^2}.\frac{2.4}{3^2}...\frac{99.101}{100^2}=\frac{1.2.3...100.101}{2^2.3^2...100^2}=\frac{-101}{100!}>\frac{-101}{2.101}=\frac{-1}{2}\)
Vậy A>\(-\frac{1}{2}\)
\(A=\frac{-1.3}{2^2}.\frac{-2.4}{3^2}...\frac{-99.101}{100^2}\)
\(=-\left(\frac{1.2...99}{2.3...100}.\frac{3.4...101}{2.3...100}\right)\)
\(=-\left(\frac{1}{100}.\frac{101}{2}\right)\)
\(=-\frac{101}{200}< \frac{-100}{200}=\frac{-1}{2}\)
a.
\(\left(\frac{1}{2}-1\right)\times\left(\frac{1}{3}-1\right)\times\left(\frac{1}{4}-1\right)\times...\times\left(\frac{1}{2016}-1\right)\left(\frac{1}{2017}-1\right)\)
\(=\left(-\frac{1}{2}\right)\times\left(-\frac{2}{3}\right)\times\left(-\frac{3}{4}\right)\times...\times\left(-\frac{2015}{2016}\right)\times\left(-\frac{2016}{2017}\right)\)
\(=\frac{1}{2017}\)
b.
\(\frac{2^{50}\times7^2+2^{50}\times7}{4^{26}\times112}=\frac{2^{50}\times\left(7^2+7\right)}{\left(2^2\right)^{26}\times112}=\frac{2^{50}\times\left(49+7\right)}{2^{52}\times2\times56}=\frac{56}{2^3\times56}=\frac{1}{8}\)
a. (1/2-1).(1/3-1)(1/4-1). ... .(1/2017-1)=(-1/2)(-2/3)(-3/4). ... .(-2016/2017)
Vì dãy số có 2016 số hạng âm nên tích của chúng là một số dương.
Ta có:(-1/2)(-2/3)(-3/4). ... . (-2016/2017)=1/2017
\(A=\frac{-3}{4}.\frac{-8}{9}......\frac{-9999}{1000}\)
\(=-\frac{1.3}{2.2}.\frac{2.4}{3.3}....\frac{99.101}{100.100}\)
\(=-\frac{1.2.3...99}{2.3...100}.\frac{3.4...101}{2.3...100}\)
\(=-\frac{1}{100}.\frac{101}{2}=-\frac{101}{200}< \frac{-100}{200}=\frac{-1}{2}\)
VẬY \(A< \frac{-1}{2}\)