cho góc xOy.Điểm A nằm trên O,B nằm trên Oy sao cho OA=OB.C thuộc Õ,D thuộc Oy sao cho CA=DB.Chứng minh:
a)BC=AD
b)OI là phân giác của góc xOy
c)tam giac AIC=BID
d)tam giacAOI=BOI
e)tam giac COI=BOI
g)AB//CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta OAC\)và \(\Delta OBC\)có:
OA = OB (gt)
\(\widehat{AOC}=\widehat{BOC}\)(Oz là tia p/g của \(\widehat{xOy}\))
OC là cạnh chung
\(\Rightarrow\Delta OAC=\Delta OBC\left(c.g.c\right)\)
\(\Rightarrow AC=BC\)(2 cạnh tương ứng)
b) Ta có: \(\Delta OAC=\Delta OBC\)(theo a)
\(\Rightarrow\widehat{OAC}=\widehat{OBC}\)(2 góc tương ứng)
hay \(\widehat{OAD}=\widehat{OBE}\)
Xét \(\Delta OAD\)và \(\Delta OBE\)có:
\(\widehat{O}\)là góc chung
OA = OB (gt)
\(\widehat{OAD}=\widehat{OBE}\)(cmt)
\(\Rightarrow\Delta OAD=\Delta OBE\left(g.c.g\right)\)
=> AD = BE (2 cạnh tương ứng)
Mà AC = BC (theo a)
=> AD - AC = BE - BC
=> CD = CE
Xét \(\Delta ACE\)và \(\Delta BCD\)có:
AC = BC (cmt)
\(\widehat{ACE}=\widehat{BCD}\)(2 góc đối đỉnh)
CE = CD (cmt)
\(\Rightarrow\Delta ACE=\Delta BCD\left(c.g.c\right)\)
a, do H \(\in\)phân giác \(\widehat{xOy}\)
mà HA\(\perp\)Ox, HB\(\perp\)Oy
=>HA=HB
=>\(\Delta HAB\)cân tại H (đpcm)
b,Ta có:
+\(\Delta OAH=\Delta OBH\left(ch-gn\right)\Rightarrow OA=OB\)
+\(\Delta OAC=\Delta OBC\left(c.g.c\right)\Rightarrow\widehat{OAC}=\widehat{OBC}\)
mà \(\widehat{xOy}+\widehat{OAC}=90^o\Rightarrow\widehat{xOy}+\widehat{OBC}=90^o\)
Xét \(\Delta OBM\)có \(\widehat{BOM}+\widehat{OBM}=90^o\Rightarrow\widehat{OMB}=90^o\Rightarrow BC\)\(\perp Ox\)
c,Xét \(\Delta AOB\)có \(\widehat{AOB}=60^o;AO=BO\Rightarrow\Delta AOB\)đều
Đường cao AD vừa là đường cao đồng thời là đường phân giác \(\widehat{OAB}\)
\(\Rightarrow\widehat{OAD}=30^o\)
Xét \(\Delta\)AOD vuông tại D có \(\widehat{OAD}=30^o\Rightarrow OD=\frac{1}{2}OA\Rightarrow OA=2OD\)
Lời giải:
a) Xét tam giác AOD và COB có:
\(AO=CO\) (giả thiết)
\(OD=OB\) (giả thiết)
\(\widehat{O}\) chung
\(\Rightarrow \triangle AOD=\triangle COB (c.g.c)\) (đpcm)
b)
Vì \(OA=OC; OB=OD\Rightarrow OB-OA=OD-OC\) hay \(AB=CD\)
\(OB=OD\) nên tam giác OBD cân tại O. Do đó \(\widehat{OBD}=\widehat{ODB}\) hay \(\widehat{ABD}=\widehat{CDB}\)
Xét tam giác ABD và CDB có:
\(BD\) chung
\(\widehat{ABD}=\widehat{CDB}\) (cmt)
\(AB=CD\) (cmt)
Do đó $\triangle ABD=\triangle CDB$ (c.g.c)
Ta có đpcm.
a, NỐi O với I
Xét Tam giác OAI và tam giác OBI có
OA=OB
A=B=90 độ
OI chung
=>HAI tam giác bằng nhau
=>AI=BI (t/ư)
=>tam giác AIB cân tại I
Xét tam giác ABO và ACO có
BO=CO( gt)
BÔA=AÔC(gt)
OA cạnh chung
=>tam giác...=tam giác...(c-g-c)
=>AB=AC
Xét tam giác AMO và ANO có
MO=NO( gt)
MÔA=NÔA(gt)
OA cạnh chung
=>tam giác...= tam giác...(c-g-c)
=AM=AN
Ta có BM = BO - OM
CN = CO - ON
mà BO=CO;OM=ON
=>BM=CN
Xét tam giác ABM và ACM có
AB=AC(cmt)
BM=CN( cmt)
AM=AN( cmt)
=>tam giác...=>tam giác...(c-c-c)(đpcm)
a.Xét TG OAD và TG OBC có
OA=OB
OD=OC
Góc O chung
nên TG OAD=TG OBC
https://hoc24.vn/hoi-dap/question/533697.html
bn theo link này nha. Câu này mk trả lời rồi