K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2022

Sửa lại đề là tìm tất cả các số nguyên a nhé.

Ta có \(A=a^4+a^3+a^2=a^2\left(a^2+a+1\right)\)

Để ý rằng nếu \(a>0\) thì \(a^2+a+1>a^2\) và \(a^2+a+1< a^2+2a+1=\left(a+1\right)^2\) , hay \(a^2< a^2+a+1< \left(a+1\right)^2\). Dẫn đến \(a^2+a+1\) không là SCP và đương nhiên \(A=a^2\left(a^2+a+1\right)\) không là số chính phương.

Nếu \(a< -1\) thì \(a^2+a+1>a^2+2a+1=\left(a+1\right)^2\) và \(a^2+a+1< a^2\). Từ đó \(\left(a+1\right)^2< a^2+a+1< a^2\) hay \(a^2+a+1\) không phải là SCP, do đó \(A=a^2\left(a^2+a+1\right)\) không là số chính phương.

Do vậy \(-1\le a\le0\) hay \(a\in\left\{-1;0\right\}\). Thử lại, ta thấy cả 2 số này thỏa mãn.

Vậy để A có giá trị là số chính phương thì \(a\in\left\{-1;0\right\}\)

26 tháng 10 2022

Em cảm ơn Lê Song Phương rất nhiều ạ 

28 tháng 6 2021

Có \(A=n^2\left(n^2+n+1\right)\)

Để A là scp \(\Leftrightarrow n^2+n+1\) là scp

Đặt \(a^2=n^2+n+1\) (\(a\in Z\))

\(\Leftrightarrow4a^2=4n^2+4n+4\)

\(\Leftrightarrow4a^2=\left(2n+1\right)^2+3\)

\(\Leftrightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=3\)

Do \(a,n\in Z\Rightarrow2a-2n-1;2a+2n+1\) \(\in Z\)

\(\Rightarrow\left\{{}\begin{matrix}2a-2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\2a+2n+1\inƯ\left(3\right)\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}2a-2n-1=-3\\2a+2n+1=-1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}4a=-4\\2a+2n+1=-1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a=-1\\n=0\end{matrix}\right.\) (tm)

TH2:\(\left\{{}\begin{matrix}2a-2n-1=-1\\2a+2n+1=-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a=-4\\2a+2n+1=-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-1\\n=-1\end{matrix}\right.\) (tm)

TH3:\(\left\{{}\begin{matrix}2a-2n-1=1\\2a+2n+1=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a=4\\2a+2n+1=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\n=0\end{matrix}\right.\) (tm)

TH4:\(\left\{{}\begin{matrix}2a-2n-1=3\\2a+2n+1=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a=4\\2a+2n+1=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\n=-1\end{matrix}\right.\) (tm)

Vậy n=0 và n=-1 thì A là scp

28 tháng 6 2021

Cảm ơn nhìu ạ~

10 tháng 6 2021

b) 

Để A là số nguyên tố thì \(\dfrac{4}{x-3}\) phải là số nguyên tố có một nghiệm bằng 1 và bằng chính nó

\(x-3\inƯ_{\left(4\right)}=\left\{\pm1;\pm2;\pm4\right\}\). Mặt khác ta thấy chỉ có 2 là số nguyên tố \(\Rightarrow x-3=2\Leftrightarrow x=5\)

Giải:

a) Để \(A=\dfrac{4}{x-3}\) là số chính phương thì A là Ư chính phương của 4

\(\Rightarrow\left(x-3\right)\inƯ\left(4\right)=\left\{1;4\right\}\) 

Ta có bảng giá trị:

x-314
x47

Vậy \(x\in\left\{4;7\right\}\) 

b) Để \(A=\dfrac{4}{x-3}\) là số nguyên tố thì \(4⋮\left(x-3\right)\) 

\(4⋮\left(x-3\right)\) 

\(\Rightarrow\left(x-3\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\) 

Ta thấy: 

Vì chỉ có mỗi 2 là số nguyên tố nên ta có:

x-3=2

x=5

20 tháng 2 2020

Bài 2:

a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3

b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3

\(\frac{n+4}{n-3}\)\(\frac{n-3+7}{n-3}\)\(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3

=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}

=> n\(\in\){ 4; 10; 2; -4}

Vậy...

c) Bn thay vào r tính ra

20 tháng 2 2020

la 120

6 tháng 3 2021

https://h7.net/hoi-dap/toan-6/tim-n-biet-1-2-3-n-la-so-chinh-phuong-faq291864.html

bạn tham khảo