Tìm số tự nhiên n để n10+1 chia hết cho10
Người nào làm được cách làm đúng kết qủa đúng mình sẽ tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có đó bạn. Nếu bạn lấy bất kì số \(n\) nào có dạng \(10k\pm3\) (tức là chia 10 dư 3 hoặc dư 7) thì \(n^{10}+1\) sẽ chia hết cho 10. Ví dụ:
\(7=10.1-3\Rightarrow7^{10}+1=282475250⋮10\)
2n+3=2n-4+7
=2(n-2) +7
vì 2(n-2) chia hết cho n-2 nên để 2n+3 chia hết cho n-2 thì n-2 phải thuộc ước của 7
=>n-2={-7;-1;1;7}
<=> n={-5;1;3;9}
Giải thích các bước giải:
3n+5⋮n+2
⇔3n+6−1⋮n+2
⇔3(n+2)−1⋮n+2
⇔−1⋮n+21)
⇔n+2∈Ư(−1)
⇔n+2∈{−1;1}
⇔n∈{−3;−1}
Vì nn là số tự nhiên nên không có giá trị thõa mãn
⇔n∈{−3;−1}⇔n∈{-3;-1}
Vì nn là số tự nhiên nên không có giá trị thõa mãn
ta có 3n+10 chia hết cho n-1
=>3n-3+13 chia hết cho n-1
mà 3n-3 chia hết cho n-1
=>13 chia hết cho n-1
ta có bảng sau:
n-1 | 1 | 13 | -1 | -13 | |
n | 2 | 14 | 0 | -12 |
=>n=(2;14;0;-12)
Số cần tìm bớt đi 1 đơn vị được số mới chia hết cho 2; 3; 5; 7
Số mới là
2x3x5x7=210
Số cần tìm là
210+1=211
Ta có :
6n + 7 = 6n + 2 + 5 = 2 . ( 3n + 1 ) + 5
vì 2 . ( 3n + 1 ) \(⋮\)3n + 1 để 6n + 7 \(⋮\)3n + 1 thì 5 \(⋮\)3n + 1 \(\Rightarrow\)3n + 1 \(\in\)Ư ( 5 ) = { 1 ; -1 ; 5 ; -5 }
Lập bảng ta có :
3n+1 | 1 | -1 | 5 | -5 |
n | 0 | -2/3 | 4/3 | -2 |
Vì n thuộc N nên n = 0
Vậy n = 0
6n + 7 chia hết cho 3n+1 (1)
3n+1 chia hết cho 3n+1 => 2.(3n+1) chia hết cho 3n + 1 => 6n+2 chia hết cho 3n +1 (2)
từ (1) và (2) suy ra
(6n+7) - (6n+2) chia hết cho 3n + 1
=> 5 chia hết cho 3n + 1
=> 3n+1=1; -1; 5 -5
rồi bạn thay vào để tính ra n
N=5a+4b
Đổi : 5a=50
4b=40
50+40=90.Vậy N = 90
a)90:2=45
b)90:5=18
c)90:10=9
hok tốt