\-2x + 1\= x+3
GIẢI GIÚP TÔI VS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2x-3}{x-1}< \dfrac{1}{3}\left(đk:x\ne1\right)\)
\(\Leftrightarrow6x-9< x-1\Leftrightarrow5x< 8\Leftrightarrow x< \dfrac{8}{5}\) và ĐK \(x\ne1\)
\(\dfrac{2x-3}{x-1}>\dfrac{1}{3}\left(đk:x\ne1\right)\)
\(\Leftrightarrow x-1< 6x-9\Leftrightarrow5x>8\Leftrightarrow x>\dfrac{8}{5}\) và ĐK \(x\ne1\)
a, Thay x = 3 và y = -6 vào bt ta đc
\(5.3-4.\left(-6\right)=15-\left(-24\right)=39\\ b,\\ 2.\left(-2\right)^2-5.4=8-20=\left(-12\right)\\ c,\\ 5.\left(-1\right)^2+3.\left(-1\right)-1=5+\left(-3\right)-1=1\)
a) Thay x=3; y=-6
\(5x-4y=5.3-4.\left(-6\right)=15+24=39\)
b) Thay x=-2; y=4
\(2x^4-5y=2.\left(-2\right)^4-5.4=32-20=12\)
c, Thay x=0
\(5x^2+3x-1=5.0+3.0-1=-1\)
+) x=-1
\(5x^2+3x-1=5.\left(-1\right)^2+3.\left(-1\right)-1=5-3-1=1\)
+) \(x=\dfrac{1}{3}\)
\(5x^2+3x-1=5.\left(\dfrac{1}{3}\right)^2+3.\dfrac{1}{3}-1\)
\(=\dfrac{5}{9}+1-1=\dfrac{5}{9}\)
\(\dfrac{4x+3}{5}-\dfrac{6x-2}{7}-\dfrac{5x+4}{3}>3\)
=>4/5x+3/5-6/7x+2/7-5/3x-4/3>3
=>-181/105x>362/105
=>x<-2
a: =>\(\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{4x}{2\left(x-3\right)\left(x+1\right)}=\dfrac{-x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}\)
=>x^2-3x-4x=-x^2-x
=>x^2-7x+x^2+x=0
=>2x^2-6x=0
=>x=0(nhận) hoặc x=3(loại)
b: =>\(\dfrac{2x-3-3x-15}{x+5}>=0\)
=>\(\dfrac{-x-18}{x+5}>=0\)
=>x+18/x+5<=0
=>-18<=x<-5
\(\dfrac{x}{2x+1}-\dfrac{2x}{x^2-2x-3}=\dfrac{x}{6-2x}\) (ĐKXĐ: \(x\ne3;x\ne-1\)
\(\Leftrightarrow\dfrac{x}{2x+1}-\dfrac{2x}{\left(x-3\right)\left(x+1\right)}=-\dfrac{x}{2\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}-\dfrac{2.2x}{2\left(x-3\right)\left(x+1\right)}=-\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}\)
\(\Rightarrow x^2-3x-4x=-x^2-x\)
\(\Leftrightarrow x^2-7x=-x^2-x\)
\(\Leftrightarrow x^2+x^2-7x+x=0\)
\(\Leftrightarrow2x^2-6x=0\)
\(\Leftrightarrow2x\left(x-3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\left(TM\right)\\x=3\left(KTM\right)\end{matrix}\right.\)
*TM: Thỏa mãn, KTM: Ko thỏa mãn
Vậy phương trình có tập nghiệm là \(S=\left\{0\right\}\)
\(\dfrac{2x-3}{x+5}\ge3\) (ĐKXĐ: \(x\ne-5\)
\(\Leftrightarrow\dfrac{2x-3}{x+5}-3\ge0\)
\(\Leftrightarrow\dfrac{2x-3}{x+5}-\dfrac{3x+15}{x+5}\ge0\)
\(\Leftrightarrow\dfrac{2x-3-3x-15}{x+5}\ge0\)
\(\Leftrightarrow\dfrac{-x-18}{x+5}\ge0\)
\(\Leftrightarrow-18\le x\le-5\)
a. x + \(\dfrac{3}{7}\)= \(\dfrac{2}{5}:\dfrac{18}{25}=>x+\dfrac{3}{7}=\dfrac{2}{5}\)x\(\dfrac{35}{18}=>x+\dfrac{3}{7}=\dfrac{7}{9}\)
=> x = \(\dfrac{7}{9}-\dfrac{3}{7}=\dfrac{49}{63}-\dfrac{27}{63}=\dfrac{22}{63}\)
b. \(x\) x \(\dfrac{5}{9}\)= \(\dfrac{4}{5}-\dfrac{1}{3}\)
=> \(x\) x \(\dfrac{5}{9}\)= \(\dfrac{12}{15}-\dfrac{5}{15}=>x\) x \(\dfrac{5}{9}\)= \(\dfrac{7}{15}\)
=> x = \(\dfrac{7}{15}:\dfrac{5}{9}\)
=> x = \(\dfrac{21}{25}\)
\(a.x+\dfrac{3}{7}=\dfrac{2}{5}:\dfrac{18}{35}\\x+\dfrac{3}{7}=\dfrac{2}{5}\times\dfrac{35}{18} \\ x+\dfrac{3}{7}=\dfrac{7}{9}\\ x=\dfrac{7}{9}-\dfrac{3}{7}\\ x=\dfrac{22}{63}\)
\(b.x\times\dfrac{5}{9}=\dfrac{4}{5}-\dfrac{1}{3}\\x\times\dfrac{5}{9}=\dfrac{7}{15}\\ x=\dfrac{7}{15}:\dfrac{5}{9}\\ x= \dfrac{21}{25}\)
\(-\dfrac{1}{2}x+6< 0\Leftrightarrow-\dfrac{1}{2}x< -6\Leftrightarrow\cdot\dfrac{1}{2}x>6\Leftrightarrow x>12\)
(sai thì thoi nha)
\(-\dfrac{1}{2}x+6< 0\)
\(\Leftrightarrow-\dfrac{1}{2}x< -6\)
\(\Leftrightarrow x>\left(-6\right):\left(-\dfrac{1}{2}\right)\)
\(\Leftrightarrow x>12\)
--> Chọn A
Ta có: |-2x +1| = -2x+1 khi -2x+1 ≥ 0 hay x ≤ \(\dfrac{1}{2}\)
|-2x +1| = - ( -2x+1) = 2x-1 khi -2x +1 < 0 hay x > \(\dfrac{1}{2}\)
Với x ≤ \(\dfrac{1}{2}\) ta có phương trình:
-2x+1 = x + 3
-2x - x = 3 - 1
-3x = 2
x = \(\dfrac{-2}{3}\) ( nhận)
Với x > \(\dfrac{1}{2}\) ta có phương trình:
2x-1 = x + 3
2x - x = 3+1
x = 4 (nhận)
Vậy phương trình có tập nghiệm S = {\(\dfrac{-2}{3};\) 4 }