Tìm giá trị nhỏ nhất của biểu thức P=| x - 2013| + |x - 2014 | với x là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT |a|+|b|≥|a+b| ta có:
P=|x−2012|+|x−2013|
=|2012−x|+|x−2013
≥|2012−x+x−2013|=1
Đẳng thức xảy ra khi 2012≤x≤2013
Vậy với 2012≤x≤2013 thì PMin=1
Để A = 5012-2013:(2014-x)có GTNN (giá trị nhỏ nhất)
thì 2013:(2014-x) có TGLN (giá trị lớn nhất)
tương đương 2014 - x có GTNN
Vì 2014 - x là số chia nên 2014 - x khác 0.
Do đó 2014 -x có GTNN là 1 => x = 2014 - 1 = 2013
Vậy x là 2013
Vì │x-2013│= │2013-x│
=> │x-2012│+ │x-2013│=│x-2012│+│2013-x│
Có │x-2012│+│2013-x│>=│x-2012+2013-x│
=>│x-2012│+│2013-x│>= 1 hay P>=1
=> minP=1
Có 1=0+1. Khi đó:
TH1: │x-2012│+│2013-x│=1
0 + 1
=>x=2012
TH2: │x-2012│+│2013-x│=1
1 + 0
=> x=2013
Vậy GTNN của P bằng 1 khi x=2012 hoặc x=2013
a)Để \(A=2003-\frac{1003}{999-x}\) có giá trị nhỏ nhất
\(\Rightarrow\frac{1003}{999-x}\) có giá trị lớn nhất
\(\frac{1003}{999-x}\ge1003\)
Dấu "=" xảy ra khi
\(\frac{1003}{999-x}=1003\)
=> 999 - x = 1
x = 999-1
x = 998
=> giá trị nhỏ nhất của \(A=2003-\frac{1003}{999-998}=2003-1003=1000\) tại x = 998
b) Để \(A=2003-\frac{1003}{999+x}\) đạt giá trị nhỏ nhất
=> \(\frac{1003}{999+x}\) có giá trị lớn nhất
mà x là số tự nhiên
\(\Rightarrow\frac{1003}{999+x}\ge\frac{1003}{999}\)
Dấu "=" xảy ra khi
1003/(999+x) = 1003/999
=> 999 + x = 999
x = 0
=> giá trị nhỏ nhất của A = 2003 - 1003/999+0 = 2003 - 1003/999 = 2002 và 4/999 tại x = 0
P=|x-2013|+|x-2014|
=> P = |x-2013| +|2014-x|
Áp dụng bất đẳng thức về giá trị tuyệt đối :
| x - 2013 | + | 2014 - x | >hoặc = | x - 2013 + 2014 -x | = 1 với mọi x
Dấu = xảy ra <=> (x-2013)(2014-x) >hoặc = 0
=>(x-2013)(x-2014)< hoặc =0
=>x-2013 và x-2014 trái dấu
x-2013>x-2014
=>x-2013>hoặc = 0 và x-2014 < hoặc = 0
2013< hoặc =x< hoặc = 2014
Vậy giá trị nhỏ nhất của P = 1 tại 2013< hoặc = x < hoặc = 2014