K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2023

\(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\left(1\right)\)

a) A xác định \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne1\end{matrix}\right.\)

\(\left(1\right)\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}.\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x+1}\)

b) Để \(A=-\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{x^2}{x+1}=-\dfrac{1}{2}\left(x\ne-1\right)\)

\(\Leftrightarrow2x^2=-\left(x+1\right)\)

\(\Leftrightarrow2x^2+x+1=0\)

\(\Delta=1-8=-7< 0\)

Nên phương trình trên vô nghiệm \(\left(x\in\varnothing\right)\)

c) Để \(A< 1\) 

\(\Leftrightarrow\dfrac{x^2}{x+1}< 1\)

\(\Leftrightarrow x^2< x+1\left(x\ne-1\right)\)

\(\Leftrightarrow x^2-x-1< 0\)

\(\Leftrightarrow x^2-x+\dfrac{1}{4}-\dfrac{1}{4}-1< 0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2-\dfrac{5}{4}< 0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2< \dfrac{5}{4}\)

\(\Leftrightarrow-\dfrac{\sqrt[]{5}}{2}< x-\dfrac{1}{2}< \dfrac{\sqrt[]{5}}{2}\)

\(\Leftrightarrow\dfrac{-\sqrt[]{5}+1}{2}< x< \dfrac{\sqrt[]{5}+1}{2}\)

d) Để A nguyên

\(\Leftrightarrow\dfrac{x^2}{x+1}\in Z\)

\(\Leftrightarrow x^2⋮x+1\)

\(\Leftrightarrow x^2-x\left(x+1\right)⋮x+1\)

\(\Leftrightarrow x^2-x^2+x⋮x+1\)

\(\Leftrightarrow x⋮x+1\)

\(\Leftrightarrow x-x-1⋮x+1\)

\(\Leftrightarrow-1⋮x+1\)

\(\Leftrightarrow x+1\in\left\{-1;1\right\}\)

\(\Leftrightarrow x\in\left\{-2;0\right\}\left(x\in Z\right)\)

11 tháng 8 2023

!ERROR 404!

a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(P=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\dfrac{1}{x+2}\)

\(=\dfrac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{1}\)

\(=\dfrac{x-2x+4+x-2}{x-2}\)

\(=\dfrac{2}{x-2}\)

b) Để P nguyên thì \(2⋮x-2\)

\(\Leftrightarrow x-2\in\left\{1;-1;2;-2\right\}\)

hay \(x\in\left\{3;1;4;0\right\}\)

a: \(P=\dfrac{x+3-3x+3}{\left(x+1\right)\left(x-1\right)}:\dfrac{x-1-2}{x-1}\)

\(=\dfrac{-2\left(x-3\right)}{\left(x+1\right)\left(x-1\right)}\cdot\dfrac{x-1}{x-3}=\dfrac{-2}{x+1}\)

b: Để P<0 thì x+1>0

hay x>-1

c: Để Q=(-2x)/(x+1) là số nguyên thì \(-2x-2+2⋮x+1\)

\(\Leftrightarrow x+1\in\left\{1;-1;2;-2\right\}\)

hay \(x\in\left\{0;-2;-3\right\}\)

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Lời giải:

a. ĐKXĐ: $x\geq 0$

$P< \frac{1}{2}\Leftrightarrow \frac{\sqrt{x}}{\sqrt{x}+2}< \frac{1}{2}$

$\Leftrightarrow \frac{\sqrt{x}}{\sqrt{x}+2}-\frac{1}{2}<0$

$\Leftrightarrow \frac{\sqrt{x}-2}{2(\sqrt{x}+2)}<0$

$\Leftrightarrow \sqrt{x}-2<0$ (do mẫu dương rồi) 

$\Leftrightarrow 0\leq x< 4$

Kết hợp đkxđ suy ra $0\leq x< 4$

b. 

Với $x\geq 0$ thì $P\geq 0$

Lại có: $P<1$ (do tử nhỏ hơn mẫu)

$\Rightarrow P$ nguyên khi mà $P=0$

$\Leftrightarrow x=0$

 

29 tháng 6 2023

cảm ơn thầy ạ

Bài 1:

Để biểu thức nhận giá trị nguyên thì \(3\sqrt{x}+1⋮2\sqrt{x}-1\)

\(\Leftrightarrow6\sqrt{x}+2⋮2\sqrt{x}-1\)

\(\Leftrightarrow2\sqrt{x}-1\in\left\{1;-1;5\right\}\)

\(\Leftrightarrow2\sqrt{x}\in\left\{2;0;6\right\}\)

hay \(x\in\left\{4;0;36\right\}\)

23 tháng 8 2021

giúp e b2