K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

ta có xy+yz+zx=0=> \(\frac{xy+yz+zx}{xyz}=0\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

đặt \(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\Rightarrow a+b+c=0\)

ta xét \(a^3+b^3+c^3-3abc=a^3+b^3+3ab\left(a+b\right)+c^3-3ab-3abc\)

           \(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

=> \(a^3+b^3+c^3=3abc\) \(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

=> \(M=\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)

=> M=3

15 tháng 3 2017

bạn lên mạng đánh đề bài kiểu gì cũng có nhé -:)) tớ tìm rồi đấy >_<

26 tháng 7 2018

xy+yz+zx=0 nên 1/z+1/x+1/y = 0 (chia cả 2 vế cho xyz)

Bạn chứng minh được a^3 +b^3 +c^3  =3abc khi a+b+c =0 (chắc bạn học rồi)

Do đó: 1/x^3 +1/y^3 +1/z^3 = 3/xyz

Ta có: M = yz /x^2 + zx /y^2+ xy /z^2

              = xyz/ z^3 + xyz/ y^3 + xyz /z^3

              = xyz (1/x^3 + 1/y^3 + 1/z^3)

              = xyz .3/xyz

              = 3 (vì tích xyz khác 0)

Vậy M = 3 

Chúc bạn học tốt.

26 tháng 7 2018

Cảm ơn bạn Pham Van Hung nhé

12 tháng 9 2017

\(M=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{y^3z^3+x^3z^3+x^3y^3}{x^2y^2z^2}=\frac{\left(yz+xz\right)^3+x^3y^3-3xy^2z^3-3x^2yz^3}{x^2y^2z^2}\)

\(=\frac{\left(yz+xz+xy\right)\left[\left(yz+xz\right)^2+xy\left(yz+xz\right)+x^2y^2\right]-3xyz^2\left(xz+yz\right)}{x^2y^2z^2}\)

\(=\frac{0.\left[\left(yz+xz\right)^2+xy\left(yz+xz\right)+x^2y^2\right]-3xyz^2\left(xz+yz\right)}{x^2y^2z^2}\)

\(=\frac{-3xyz^2\left(xz+yz\right)}{x^2y^2z^2}=\frac{-3\left(xz+yz\right)}{xy}=\frac{-3.\left(-xy\right)}{xy}=3\)

17 tháng 7 2016

Ta có: 

\(xy+yz+xz=0\)

Chia cả hai vế của đẳng thức trên cho  \(xyz\ne0\), ta được:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

Nhận xét: Chú ý rằng nếu  \(x+y+z=0\)  \(\left(1\right)\) thì  \(x^3+y^3+z^3=3xyz\)  \(\left(\text{*}\right)\)

Thật vậy,  từ   \(\left(1\right)\)  \(\Rightarrow\)  \(z=-\left(x+y\right)\)

Do đó,  \(x^3+y^3+z^3=x^3+y^3-\left(x+y\right)^3=-3x^2y-3xy^2=-3xy\left(x+y\right)=3xyz\)

Vậy, đẳng thức   \(\left(\text{*}\right)\) được chứng minh.

Áp dụng nhận xét trên, ta có:

Nếu  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)  thì  \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=3.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}=\frac{3}{xyz}\)

Vậy,  \(M=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)  \(\left(x,y,z\ne0\right)\)