K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

an = 1 + 2 + 3 + ... + n =\(\frac{n\left(n+1\right)}{2}\)

an + 1 = 1 + 2 + 3 + ... + n + (n + 1) =\(\frac{\left(n+1\right)\left(n+2\right)}{2}\)

an + an + 1 =\(\frac{n\left(n+1\right)}{2}+\frac{\left(n+1\right)\left(n+2\right)}{2}=\frac{\left(n+1\right)\left(2n+2\right)}{2}=\left(n+1\right)^2\)là số chính phương (đpcm)

28 tháng 1 2021

Ta có:

a= n(n+1)(n+2)(n+3) + 1

= (n2 + 3n)(n2 + 3n + 2) +1

= (n2 + 3n)2+ 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì (n2 + 3n + 1)cũng là số tự nhiên, vì vậy, an là số chính phương.

28 tháng 1 2021

Ta có:

a= n(n+1)(n+2)(n+3) + 1

= (n2 + 3n)(n2 + 3n + 2) +1

= (n2 + 3n)2+ 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì (n2 + 3n + 1)cũng là số tự nhiên, vì vậy, an là số chính phương.

28 tháng 1 2021

Ta có:

a= n(n+1)(n+2)(n+3) + 1

= (n2 + 3n)(n2 + 3n + 2) +1

= (n2 + 3n)2+ 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì (n2 + 3n + 1)cũng là số tự nhiên, vì vậy, an là số chính phương.

đề thấy hơi chán,từ số kia =2an,mẫu số cx chia hết cho 2 thì sao tối giản đc hả bạn ơi

28 tháng 6 2015

20^2x có tận cùng là 0

12^2x=144^x;2012^2x=4048144^x

xét x=2k+1 thì ta có: 144^(2k+1)=144^2k*144=20726^k*144 có tận cùng là 4

4048144^(2k+1)=(...6)^2*4048144 có tận cùng là 4 

suy ra số đã cho có tận cùng là 8 không phải là số chính phương (1)

xét x=2k thì ta có:144^2k=20736^k có tận cùng là 6

4948144^2k=(...6)^k có tận cùng là 6

suy ra số đã cho có tận cùng là 2 không phải là số chính phương (2)

từ(1) và (2) suy ra không tồn tại số x

4 tháng 1 2019

Đinh Tuấn việt chép mạng thề luôn!

nếu x = 2k thì 2015^2x = 4060225^x chứ không phải là 4048144^x nha

Nếu mún bt hãy xem dòng thứ 2 của lời giải của bạn ấy có ghi là

2012^2x = 4048144^x 

Nhưng đề bài lại nói là 2015^2x  cơ mà ??

14 tháng 7 2018

Hàm số  f ( x )   =   x n   +   a 1 x n - 1   +   a 2 x n - 2   +   . . .   +   a n - 1 x   +   a n   =   0  xác định trên R

- Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vì Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên với dãy số ( x n ) bất kì mà x n   →   + ∞ ta luôn có lim f ( x n )   =   + ∞

Do đó, f ( x n ) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Nếu số dương này là 1 thì f ( x n )   >   1 kể từ một số hạng nào đó trở đi.

Nói cách khác, luôn tồn tại số a sao cho f(a) > 1 (1)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vì Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên với dãy số ( x n ) bất kì mà x n   →   − ∞ ta luôn có lim f ( x n )   =   − ∞ hay l i m [ − f ( x n ) ]   =   + ∞

Do đó, − f ( x n ) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Nếu số dương này là 1 thì − f ( x n )   >   1 kể từ số hạng nào đó trở đi. Nói cách khác, luôn tồn tại b sao cho −f(b) > 1 hay f(b) < −1 (2)

- Từ (1) và (2) suy ra f(a).f(b) < 0

Mặt khác, f(x) hàm đa thức liên tục trên R nên liên tục trên [a; b]

Do đó, phương trình f(x) = 0 luôn có nghiệm.

2 tháng 8 2023

\(a_n=1+2+3+...+n=\dfrac{n\left(n+1\right)}{2}\)

\(\Rightarrow a_{n+1}=1+2+3+...+n+\left(n+1\right)=\dfrac{\left(n+1\right)\left(n+2\right)}{2}\)

\(\Rightarrow a_n+a_{n+1}=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n+1\right)\left(n+2\right)}{2}\)

\(=\dfrac{\left(n+1\right)}{2}.\left(n+n+2\right)=\dfrac{\left(n+1\right)}{2}.\left(2n+2\right)\)

\(=\dfrac{\left(n+1\right)}{2}.2\left(n+1\right)=\left(n+1\right)^2\)

\(\Rightarrow dpcm\)

2 tháng 8 2023

ko bt