Cho an = 1+2+3+...+n. Chứng minh rằng an+an+1 là một số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
an = n(n+1)(n+2)(n+3) + 1
= (n2 + 3n)(n2 + 3n + 2) +1
= (n2 + 3n)2+ 2(n2 + 3n) + 1
= (n2 + 3n + 1)2
Với n là số tự nhiên thì (n2 + 3n + 1)2 cũng là số tự nhiên, vì vậy, an là số chính phương.
Ta có:
an = n(n+1)(n+2)(n+3) + 1
= (n2 + 3n)(n2 + 3n + 2) +1
= (n2 + 3n)2+ 2(n2 + 3n) + 1
= (n2 + 3n + 1)2
Với n là số tự nhiên thì (n2 + 3n + 1)2 cũng là số tự nhiên, vì vậy, an là số chính phương.
Ta có:
an = n(n+1)(n+2)(n+3) + 1
= (n2 + 3n)(n2 + 3n + 2) +1
= (n2 + 3n)2+ 2(n2 + 3n) + 1
= (n2 + 3n + 1)2
Với n là số tự nhiên thì (n2 + 3n + 1)2 cũng là số tự nhiên, vì vậy, an là số chính phương.
đề thấy hơi chán,từ số kia =2an,mẫu số cx chia hết cho 2 thì sao tối giản đc hả bạn ơi
20^2x có tận cùng là 0
12^2x=144^x;2012^2x=4048144^x
xét x=2k+1 thì ta có: 144^(2k+1)=144^2k*144=20726^k*144 có tận cùng là 4
4048144^(2k+1)=(...6)^2*4048144 có tận cùng là 4
suy ra số đã cho có tận cùng là 8 không phải là số chính phương (1)
xét x=2k thì ta có:144^2k=20736^k có tận cùng là 6
4948144^2k=(...6)^k có tận cùng là 6
suy ra số đã cho có tận cùng là 2 không phải là số chính phương (2)
từ(1) và (2) suy ra không tồn tại số x
Đinh Tuấn việt chép mạng thề luôn!
nếu x = 2k thì 2015^2x = 4060225^x chứ không phải là 4048144^x nha
Nếu mún bt hãy xem dòng thứ 2 của lời giải của bạn ấy có ghi là
2012^2x = 4048144^x
Nhưng đề bài lại nói là 2015^2x cơ mà ??
Hàm số f ( x ) = x n + a 1 x n - 1 + a 2 x n - 2 + . . . + a n - 1 x + a n = 0 xác định trên R
- Ta có
Vì nên với dãy số ( x n ) bất kì mà x n → + ∞ ta luôn có lim f ( x n ) = + ∞
Do đó, f ( x n ) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.
Nếu số dương này là 1 thì f ( x n ) > 1 kể từ một số hạng nào đó trở đi.
Nói cách khác, luôn tồn tại số a sao cho f(a) > 1 (1)
Vì nên với dãy số ( x n ) bất kì mà x n → − ∞ ta luôn có lim f ( x n ) = − ∞ hay l i m [ − f ( x n ) ] = + ∞
Do đó, − f ( x n ) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.
Nếu số dương này là 1 thì − f ( x n ) > 1 kể từ số hạng nào đó trở đi. Nói cách khác, luôn tồn tại b sao cho −f(b) > 1 hay f(b) < −1 (2)
- Từ (1) và (2) suy ra f(a).f(b) < 0
Mặt khác, f(x) hàm đa thức liên tục trên R nên liên tục trên [a; b]
Do đó, phương trình f(x) = 0 luôn có nghiệm.
\(a_n=1+2+3+...+n=\dfrac{n\left(n+1\right)}{2}\)
\(\Rightarrow a_{n+1}=1+2+3+...+n+\left(n+1\right)=\dfrac{\left(n+1\right)\left(n+2\right)}{2}\)
\(\Rightarrow a_n+a_{n+1}=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n+1\right)\left(n+2\right)}{2}\)
\(=\dfrac{\left(n+1\right)}{2}.\left(n+n+2\right)=\dfrac{\left(n+1\right)}{2}.\left(2n+2\right)\)
\(=\dfrac{\left(n+1\right)}{2}.2\left(n+1\right)=\left(n+1\right)^2\)
\(\Rightarrow dpcm\)
an = 1 + 2 + 3 + ... + n =\(\frac{n\left(n+1\right)}{2}\)
an + 1 = 1 + 2 + 3 + ... + n + (n + 1) =\(\frac{\left(n+1\right)\left(n+2\right)}{2}\)
an + an + 1 =\(\frac{n\left(n+1\right)}{2}+\frac{\left(n+1\right)\left(n+2\right)}{2}=\frac{\left(n+1\right)\left(2n+2\right)}{2}=\left(n+1\right)^2\)là số chính phương (đpcm)