cho hình thang ABCD có đáy nhỏ AB đáy lớn CD .Hai đường chéo AC và BD cắt nhau tại I .Biết diện tích ABI =13,6 cm2 , diện tích BCI =20 cm2 . Tính diện tích ABCD .GIÚP MÌNH NHÉ . MÌNH K CHO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABI và BCI có chung đáy BI => Tỉ lệ diện tích BCI/ABI = chiều cao BCI/ chiều cao ABI = 20,4/13,6 = 3/2
-Xét S_BCD và S_ABD chung đáy BD tỉ lệ chiều cao = 3/2 =>Tỉ lệ S_BCD/S_ABD = 3/2.
Mà S_ACD = S_BCD và S_ABC = S_BD => Tỉ lệ S_ACD/S_ABC = 3/2
Vậy S_ACD là : (13,6 + 20,4) : 2 x 3 = 51 (cm2)
Diện tích hình thang ABCD là : 13,6 + 20,4 + 51 = 85 (cm2)
Xét tam giác ABI và BCI có chung đáy BI => Tỉ lệ diện tích BCI/ABI = chiều cao BCI/ chiều cao ABI = 20,4/13,6 = 3/2
-Xét S_BCD và S_ABD chung đáy BD tỉ lệ chiều cao = 3/2 =>Tỉ lệ S_BCD/S_ABD = 3/2.
Mà S_ACD = S_BCD và S_ABC = S_BD => Tỉ lệ S_ACD/S_ABC = 3/2
Vậy S_ACD là : (13,6 + 20,4) : 2 x 3 = 51 (cm2)
Diện tích hình thang ABCD là : 13,6 + 20,4 + 51 = 85 (cm2)
Do 2 tam giác ABI và BIC có chung BI nên 2 đường cao kẻ từ A và C xuống BI có tỉ lệ với diện tích: S_ABI/S_BIC = 13,6/20,4 = 2/3
=> S_ADB = 2/3 S_BDC => S_ABC = 2/3 S_ADC
Mà S_ABC = S_ABI + S_BIC = 13,6 + 20,4 = 34 (cm2)
S_ADC = 34 : 2 x 3 = 51 (cm2)
S_ABCD = S_ABC + S_ADC = 34 + 51 = 85 (cm2)
Ai tích mình mình tích lại cho
-Xét tam giác ABI và BCI có chung đáy BI => Tỉ lệ diện tích BCI/ABI = chiều cao BCI/ chiều cao ABI = 20,4/13,6 = 3/2
-Xét S_BCD và S_ABD chung đáy BD tỉ lệ chiều cao = 3/2 =>Tỉ lệ S_BCD/S_ABD = 3/2.
Mà S_ACD = S_BCD và S_ABC = S_BD => Tỉ lệ S_ACD/S_ABC = 3/2
Vậy S_ACD là : (13,6 + 20,4) : 2 x 3 = 51 (cm2)
Diện tích hình thang ABCD là : 13,6 + 20,4 + 51 = 85 (cm2)
Bài giải
Hình thang ABCD cho ta SAID=SBIC gọi diện tích 2 hình tam giác này là n.
Xét 2 tam giác AIB và AID chung đường cao kẻ từ A nên 2 cạnh đáy IB và ID tỉ lệ với 2 diện tích: IB/ID = 24,5/n
Tương tự với 2 tam giác CIB và CID ta có IB/ID = n/98
Suy ra: 24,5/n = n/98
n x n = 98 x 24,5 = 2401
Vậy n= 49
SABCD = 24,5 + 98 + 49x2 = 220,5 (cm2)
ĐS: 220,5 cm2