5 + 5 mũ 3 + 5 mũ 5 + 5 mũ 7 +...+5 mũ 99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)64:2mũ5×30×4
= 64 : 32 x 30 x 4
= 240
b)3 mũ 2× 5 - 2 mũ 2×7+2 mũ 0 × 5
= 9 x 5 - 4 x 7 + 1 x 5
= 45 - 28 + 5
= 22
c)2 mũ 3-5 mũ 3÷5 mũ 2 + 12×2 mũ 2
= 8 - 125 : 25 + 12 x 4
= 8 - 5 + 48
= 51
d)2[(7-3 mũ 3÷3 mũ 2) chia 2 mũ 2 + 99]-100
= 2[( 7 - 27 : 9) : 4 + 99] - 100
= 2[4 : 4 + 99] - 100
= 2. 100 - 100
= 200 - 100
= 100
e)4[(3 + 3^7:3^4)chia 10 + 97]-300
= 4[( 3 + 3^3) : 10 + 97] - 300
= 4[ 30 : 10 + 97 ] - 300
= 4. 100 - 300
= 400 - 300
= 100
f)2^2 x 5 [(5 mũ 2 cộng 2 mũ 3) chia 11 - 2] - 3^2 x 2
= 4 x 5 [ (25 + 8 ) : 11 - 2] - 9 x 2
= 20 [ 33 : 11 - 2] - 18
= 20. 1 - 18
= 20 - 18
= 2
Bài làm:
a) \(a=2+2^3+2^5+...+2^{99}+2^{101}\)
\(\Rightarrow4a=2^3+2^5+2^7+...+2^{101}+2^{103}\)
\(\Rightarrow4a-a=\left(2^3+2^5+2^7+...+2^{103}\right)-\left(2+2^3+2^5+...+2^{101}\right)\)
\(\Leftrightarrow3a=2^{103}-2\)
\(\Rightarrow a=\frac{2^{103}-2}{3}\)
Vậy \(a=\frac{2^{103}-2}{3}\)
b) \(b=1-5^3+5^6-5^9+...+5^{96}-5^{99}\)
\(\Rightarrow125b=5^3-5^6+5^9-5^{12}+...+5^{99}-5^{102}\)
\(\Rightarrow125b+b=\left(5^3-5^6+5^9-5^{12}+...+5^{99}-5^{102}\right)+\left(1-5^3+5^6-5^9+...+5^{96}-5^{99}\right)\)
\(\Leftrightarrow126b=1-5^{102}\)
\(\Rightarrow b=\frac{1-5^{102}}{126}\)
Vậy \(b=\frac{1-5^{102}}{126}\)
Học tốt!!!!
\(27\cdot36+73\cdot99+27\cdot14-49\cdot7\)
\(=27\cdot\left(36+14\right)+73\cdot99-49\cdot7\)
\(=27\cdot50+6884=1350+6884=8234\)
\(\dfrac{5^6}{5^4}+2^3\cdot2^2-1^{2017}\)
\(=5^2+2^5-1\)
=25+32-1
=25+31
=56
a,\(5^3.2-100:4+2^3.5\)
= 125 . 2 - 25 + 8 . 5
= 250 - 25 + 40
= 265
b, \(6^2:9+50.2-3^3.3\)
= 36 : 9 + 100 - 27 . 3
= 4 + 100 - 81
= 23
C=1+\(5^{3^{ }}+5^6+...+5^{99}\)
\(5^3\)C=\(5^3+5^6+...+5^{99}+5^{102}\)
(\(5^3-1\))C=\(5^{102}-1\)
C=\(\frac{5^{102}-1}{124}\)
B=1+3+32+...+310
3B=3(1+3+32+...+310)
3B=3+32+33+...+311
3B-B=(3+32+33+...+311)-(1+3+32+...+310)
2B=311-1
B=\(\frac{3^{11}-1}{2}\)
B=88573
a, \(390-\left(x-7\right)=13^2:12\)
\(390-\left(x-7\right)=\) \(\dfrac{169}{12}\)
\(x-7=390-\dfrac{169}{12}\)
\(x-7=\dfrac{4511}{12}\)
\(x=\dfrac{4511}{12}+7\)
\(x=\dfrac{4595}{12}\)
Vậy ...
b, \(\left(x-35.2^2\right):7=3^3-24\)
\(\left(x-35.4\right):7=27-24\)
\(\left(x-140\right):7=3\)
\(\Leftrightarrow\left(x-140\right)=3.7\)
\(\Leftrightarrow x-140=21\)
\(\Leftrightarrow x=161\)
Vậy .....
c) \(x-6:2-\left(4^2.3-24\right):2:6=3\)
\(x-3-\left(16.3-24\right):2:6=3\)
\(x-3-\left(48-24\right):2:6=3\)
\(x-3-24:2:6=3\)
\(x-3-2=3\)
\(x=3+2+3\)
\(x=8\)
Vậy ......
d) \(4x-5=5+5^2+5^3+.....+5^{99}\)
Đặt :
\(A=5+5^2+.........+5^{99}\)
\(\Leftrightarrow5A=5^2+5^3+..........+5^{100}\)
\(\Leftrightarrow5A-A=\left(5^2+5^3+......+5^{100}\right)-\left(5+5^2+....+5^{99}\right)\)
\(\Leftrightarrow4A=5^{100}-5\)
\(\Leftrightarrow A=\dfrac{5^{100}-5}{4}\)
\(\Leftrightarrow4x+5=\dfrac{5^{100}-5}{4}\)
Đến đây thì sao nữa nhỉ ?
e) \(\left(2x-1\right)^4=625\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^4=5\\\left(2x-1\right)^4=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy ....
\(A=5+5^2+5^3+...+5^{99}+5^{100}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{99}.6\)
\(=6.\left(5+5^3+...+5^{99}\right)\)
Vì \(A=6.\left(5+5^3+...+5^{99}\right)\)lên A chia hết cho 6.
Đặt A = 5 + 53 + 55 + 57 + ... + 599
52A = 53 + 55 + 57 + 59 + ... + 5101
25A - A = ( 53 + 55 + 57 + 59 + ... + 5101 ) - ( 5 + 53 + 55 + 57 + ... + 599 )
24A = 5101 - 5
A = \(\dfrac{5^{101}-5}{24}\)