K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2021

Ta viết phương trình về dạng: \(2x^2-\left(2y-1\right)x+\left(2y^2+y-10\right)=0\)

Coi đây là phương trình bậc 2 theo ẩn x thì \(\Delta_x=\left(2y-1\right)^2-8\left(2y^2+y-10\right)=-12y^2-12y+81\)

Điều kiện để phương trình có nghiệm là \(\Delta_x\ge0\)hay \(-12y^2-12y+81\ge0\)\(\Leftrightarrow\frac{-1-2\sqrt{7}}{2}\le y\le\frac{-1+2\sqrt{7}}{2}\)mà y nguyên nên \(-3\le y\le2\)

Lập bảng:

\(y\)\(-3\)\(-2\)\(-1\)\(0\)\(1\)\(2\)
\(x\)\(-1\)\(\varnothing\)\(-3\)\(2\)\(\varnothing\)\(0\)

Vậy phương trình có 4 cặp nghiệm nguyên \(\left(x,y\right)=\left\{\left(2,0\right);\left(0,2\right);\left(-1,-3\right);\left(-3;-1\right)\right\}\)

5 tháng 12 2016

2y2 x + x + y + 1 = x2 + 2y2 + xy

<=> (2y2 x - 2y2) + (x - x2) + (y - xy) = -1

<=> (x - 1)(2y2 - x - y) = - 1

\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}}hoac\:\orbr{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}}\)

Tới đây đơn giản rồi tự làm tiếp nhé 

18 tháng 9 2019

2y2 x + x + y + 1 = x2 + 2y2 + xy

<=> (2y2 x - 2y2) + (x - x2) + (y - xy) = -1

<=> (x - 1)(2y2 - x - y) = - 1

\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}}hoac\:\orbr{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}}\)

chúc bạn học tốt

Tới đây đơn giản rồi tự làm tiếp n

Câu hỏi của https://olm.vn/thanhvien/kudoshinichi2k4

2 tháng 5 2019

Ở đây nha :https://olm.vn/hoi-dap/detail/101095140158.html

NV
13 tháng 1 2021

\(y\left(x+1\right)^2=-x^2+2018x-1\)

\(\Leftrightarrow y=\dfrac{-x^2+2018x-1}{\left(x+1\right)^2}=-1+\dfrac{2020x}{\left(x+1\right)^2}\)

\(\Rightarrow\dfrac{2020x}{\left(x+1\right)^2}\in Z\)

Mà x và \(x\left(x+2x\right)+1\) nguyên tố cùng nhau

\(\Rightarrow2020⋮\left(x+1\right)^2\)

Ta có 2020 chia hết cho đúng 2 số chính phương là 1 và 4

\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=1\\\left(x+1\right)^2=4\end{matrix}\right.\) \(\Rightarrow x=\left\{0;1\right\}\) \(\Rightarrow y\)

 

NV
13 tháng 1 2021

b.

Từ pt đầu:

\(x^2+xy-2y^2+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y-2\end{matrix}\right.\)

Thế xuống dưới ...

9 tháng 8 2023

\(x^2+2xy+7.\left(x+y\right)+2y^2+10=0\)

\(\Leftrightarrow\left(x+y^2\right)+7.\left(x+y\right)+\dfrac{49}{4}+y^2-\dfrac{9}{4}=0\)

\(\Leftrightarrow\left(x+y+\dfrac{7}{2}^2\right)=\dfrac{9}{4}-y^2\)

\(Do\left(x+y+\dfrac{7}{2}^2\right)\ge0\Rightarrow\dfrac{9}{4}-y^2\ge0\Rightarrow y^2\le\dfrac{9}{4}\)

Mà y nguyên \(\Rightarrow\left\{{}\begin{matrix}y^2\\\\y^2=1\end{matrix}\right.=0\)

Thay vào phương trình đầu: 

Với \(y=0\Rightarrow x^2+7x+10=0\Rightarrow\left\{{}\begin{matrix}x=-2\\\\\\x=-5\end{matrix}\right.\)

Với \(y=1\Rightarrow x^2+9x+19=0\Rightarrow\) không có x nguyên

Với \(y=-1\Rightarrow x^2+5x+5=0\Rightarrow\) không có x nguyên