a,3x2-8x-2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2-11x+30=0\\ \Leftrightarrow x^2-5x-6x+30=0\\ \Leftrightarrow x\left(x-5\right)-6\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)
\(b,\Delta=\left(-8\right)^2-4.3\left(-5\right)=64+60=124\)
\(x_1=\dfrac{8+\sqrt{124}}{2.3}=\dfrac{8+2\sqrt{31}}{6}=\dfrac{4+\sqrt{31}}{3}\)
\(x_1=\dfrac{8-\sqrt{124}}{2.3}=\dfrac{8-2\sqrt{31}}{6}=\dfrac{4-\sqrt{31}}{3}\)
a) Cách 1: Khai triển HĐT rút gọn được 3 x 2 + 6x + 7 = 0
Vì (3( x 2 + 2x + 1) + 4 < 0 với mọi x nên giải được x ∈ ∅
Cách 2. Chuyển vế đưa về ( x + 3 ) 3 = ( x - 1 ) 3 Û x + 3 = x - 1
Từ đó tìm được x ∈ ∅
b) Đặt x 2 = t với t ≥ 0 ta được t 2 + t - 2 = 0
Giải ra ta được t = 1 (TM) hoặc t = -2 (KTM)
Từ đó tìm được x = ± 1
c) Biến đổi được
d) Biến đổi về dạng x(x - 2) (x - 4) = 0. Tìm được x ∈ {0; 2; 4}
a) 3 x 2 + 8 x + 4 = 0 ;
a = 3; b' = 4; c = 4
Δ ' = ( b ' ) 2 - a c = 4 2 - 3 . 4 = 4 ⇒ √ ( Δ ' ) = 2
Phương trình có 2 nghiệm:
x 1 = ( - 4 + 2 ) / 3 = ( - 2 ) / 3 ; x 2 = ( - 4 - 2 ) / 3 = - 2
b) 7 x 2 - 6 √ 2 x + 2 = 0
a = 7; b' = -3√2; c = 2
Δ ' = ( b ' ) 2 - a c = ( - 3 √ 2 ) 2 - 7 . 2 = 4 ⇒ √ ( Δ ' ) = 2
Phương trình có 2 nghiệm:
x 1 = ( 3 √ 2 + 2 ) / 7 ; x 2 = ( 3 √ 2 - 2 ) / 7
3x2 + 8x + 4 = 0;
a = 3; b' = 4; c = 4
Δ'= (b')2 - ac = 42 - 3.4 = 4 ⇒ √(Δ') = 2
Phương trình có 2 nghiệm:
x1 = (-4 + 2)/3 = (-2)/3; x2 = (-4 - 2)/3 = -2
ĐKXĐ: \(-\dfrac{4}{3}\le x\le5\)
\(\left(\sqrt{3x+4}-4\right)+\left(1-\sqrt{5-x}\right)+\left(3x^2-8x-16\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x-4\right)}{\sqrt{3x+4}+4}+\dfrac{x-4}{1+\sqrt{5-x}}+\left(x-4\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(\dfrac{3}{\sqrt{3x+4}+4}+\dfrac{1}{1+\sqrt{5-x}}+3x+4\right)=0\)
\(\Leftrightarrow x-4=0\)
\(\Leftrightarrow x=4\)
\(\sqrt{3x+4}-\sqrt{5-x}+3x^2-8x-19=0\) (\(5\ge x\ge\dfrac{-4}{3}\))
Vì 2 vế không âm, theo BĐT Cô-si ta được:
\(\dfrac{3x+4+1}{2}\ge\sqrt{3x+4}\)
\(\dfrac{5-x+1}{2}\ge\sqrt{5-x}\) \(\Rightarrow\) \(\dfrac{x-6}{2}\le-\sqrt{5-x}\)
Dấu "=" xảy ra khi và chỉ khi \(\left[{}\begin{matrix}3x+4=1\\5-x=1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=-1\left(KTM\right)\\x=4\left(TM\right)\end{matrix}\right.\)
Thay vào pt trên thấy pt luôn đúng nên x = 4 TMĐK
Vậy ...
Chúc bn học tốt! (Có gì sai mong bạn bỏ qua)
a, 4x2 - 49 = 0
⇔⇔ (2x)2 - 72 = 0
⇔⇔ (2x - 7)(2x + 7) = 0
⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72
b, x2 + 36 = 12x
⇔⇔ x2 + 36 - 12x = 0
⇔⇔ x2 - 2.x.6 + 62 = 0
⇔⇔ (x - 6)2 = 0
⇔⇔ x = 6
e, (x - 2)2 - 16 = 0
⇔⇔ (x - 2)2 - 42 = 0
⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0
⇔⇔ (x - 6)(x + 2) = 0
⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2
f, x2 - 5x -14 = 0
⇔⇔ x2 + 2x - 7x -14 = 0
⇔⇔ x(x + 2) - 7(x + 2) = 0
⇔⇔ (x + 2)(x - 7) = 0
⇔{x+2=0x−7=0⇔{x=−2x=7
Lời giải:
PT $\Leftrightarrow 3x^2+x(5y-8)-(2y^2+9y+4)=0$
Coi đây là pt bậc 2 ẩn $x$. Để pt có nghiệm nguyên thì:
$\Delta=(5y-8)^2+12(2y^2+9y+4)=t^2$ với $t\in\mathbb{N}$)
$\Leftrightarrow 49y^2+28y+112=t^2$
$\Leftrightarrow (7y+2)^2+108=t^2$
$\Leftrightarrow 108=(t-7y-2)(t+7y+2)$
Đến đây là dạng phương trình tích đơn giản rồi. Bạn chỉ cần xét TH. Lưu ý rằng $t+7y+2>0$ và $t-7y-2, t+7y+2$ có cùng tính chẵn lẻ.
X=-0.230138586