K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

\(Q=\)\(1+\frac{x+3}{x^2+5x+6}:\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)

\(Q=1+\frac{x+3}{x^2+3x+2x+6}:\left[\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}\right]\)

\(Q=1+\frac{x+3}{\left(x+3\right)\left(x+2\right)}:\left[\frac{2}{x-2}-\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}\right]\)

\(Q=1+\frac{1}{x+2}:\left[\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x+x-2}{\left(x-2\right)\left(x+2\right)}\right]\)

\(Q=1+\frac{1}{x+2}:\left[\frac{2x+4-2x+2}{\left(x-2\right)\left(x+2\right)}\right]\)

\(Q=1+\frac{1}{x+2}:\frac{6}{\left(x-2\right)\left(x+2\right)}\)

\(Q=1+\frac{1}{x+2}.\frac{\left(x-2\right)\left(x+2\right)}{6}\)

\(Q=1+\frac{x-2}{6}\)

\(Q=\frac{6+x-2}{6}\)

\(Q=\frac{x+4}{6}\)

b) khi \(Q=0\)thì \(\frac{x+4}{6}=0\)

\(\Rightarrow x+4=0\)

\(\Rightarrow x=-4\)

vậy \(x=-4\)khi \(Q=0\)

c) khi \(Q>0\)thì \(\frac{x+4}{6}>0\)

\(\Rightarrow x+4>0\)

\(\Leftrightarrow x>-4\)

vậy \(x>-4\)thì \(Q>0\)

23 tháng 7 2017

\(a,x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)

Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)

Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)

Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)

\(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:

\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt

Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)

\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)

\(c,x^3+6x^2+12x+8=0\)

\(\Leftrightarrow\left(x+2\right)^3=0\)

\(\Leftrightarrow x+2=0\Rightarrow x=-2\)

\(d,x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

\(e,8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)

\(f,x^3+9x^2+27x+27=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Rightarrow x+3=0\Rightarrow x=-3\)

22 tháng 1 2017

x=2 nha bn

chuc bn hoc tot

happy new year

17 tháng 1 2017

a. dùng máy tính ta bấm được 1 nghiệm x=2/3

=> 3x3-6x2-6x-2x2+4x+4=0

<=> 3x(x2-2x-2)-2(x2-2x-2)=0

<=> (x2-2x-2)(3x-2)=0

\(\Leftrightarrow\left[\begin{matrix}x=1+\sqrt{3}\\x=1-\sqrt{3}\\x=\frac{2}{3}\end{matrix}\right.\)

19 tháng 8 2018

Bài 4 : Tìm x biết:

a, 4x2 - 49 = 0

\(\Leftrightarrow\) (2x)2 - 72 = 0

\(\Leftrightarrow\) (2x - 7)(2x + 7) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}2x-7=0\\2x+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

b, x2 + 36 = 12x

\(\Leftrightarrow\) x2 + 36 - 12x = 0

\(\Leftrightarrow\) x2 - 2.x.6 + 62 = 0

\(\Leftrightarrow\) (x - 6)2 = 0

\(\Leftrightarrow\) x = 6

19 tháng 8 2018

e, (x - 2)2 - 16 = 0

\(\Leftrightarrow\) (x - 2)2 - 42 = 0

\(\Leftrightarrow\) (x - 2 - 4)(x - 2 + 4) = 0

\(\Leftrightarrow\) (x - 6)(x + 2) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)

f, x2 - 5x -14 = 0

\(\Leftrightarrow\) x2 + 2x - 7x -14 = 0

\(\Leftrightarrow\) x(x + 2) - 7(x + 2) = 0

\(\Leftrightarrow\) (x + 2)(x - 7) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=7\end{matrix}\right.\)

8 tháng 9 2018

câu 1 

a, 5x - x 2 + 2xy - 5y 

= 5x - x 2 + xy + xy - 5y 

= ( 5x - 5y ) - ( x2 - xy ) + xy 

= 5 ( x-y ) - x(x-y ) + xy 

= (5-x) ( x-y) + xy 

mik làm dc mỗi câu a ! 

a: \(x^2\left(2x-3\right)+8x-12=0\)

\(\Leftrightarrow\left(2x-3\right)\left(x^2+4\right)=0\)

=>2x-3=0

hay x=3/2

b: \(\Leftrightarrow\left(2x-5\right)\left(2x+10\right)-\left(2x-5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x+10-x+1\right)=0\)

=>(2x-5)(x+11)=0

=>x=5/2 hoặc x=-11

c: \(\Leftrightarrow2x\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

hay \(x\in\left\{0;4;-4\right\}\)

15 tháng 10 2020

1.

a, \(\left(x+3\right)\left(x-3\right)-\left(x-3\right)^2\)

\(=\left(x-3\right)\left(x+3-x+3\right)\)

\(=9\left(x-3\right)=9x-27\)

b, \(\left(2x+1\right)^2+2\left(2x+1\right)\left(x-1\right)+\left(x-1\right)^2\)

\(=\left(2x+1+x-1\right)^2=9x^2\)

c, \(x\left(x-3\right)\left(x+3\right)-\left(x^2+1\right)\left(x^2-1\right)\)

\(=x\left(x^2-9\right)-\left(x^4-1\right)\)

\(=x^3-9x-x^4+1=-x^4+x^3-9x+1\)