cho hình tam giác ABC có diện tích là 160 cm2 . các điểm M,N,P lần lượt là chung điểm của các cạnh AC,AB,CB .nối MN,ND,MP.tính diện tích diện tích AMN,NBP,MCP.MNP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M là điểm chính giữa của cạnh AC
=>M là trung điểm của AC
N là điểm chính giữa của cạnh AB
=>N là trung điểm của AB
P là điểm chính giữa của cạnh BC
=>P là trung điểm của BC
Xét ΔAMN và ΔACB có
\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\left(=\dfrac{1}{2}\right)\)
\(\widehat{A}\) chung
Do đó: ΔAMN đồng dạng với ΔACB
=>\(\dfrac{S_{AMN}}{S_{ACB}}=\left(\dfrac{AM}{AC}\right)^2=\dfrac{1}{4}\)
=>\(S_{AMN}=\dfrac{1}{4}\cdot120=30\left(cm^2\right)\)
Xét ΔBNP và ΔBAC có
\(\dfrac{BN}{BA}=\dfrac{BP}{BC}\left(=\dfrac{1}{2}\right)\)
\(\widehat{B}\) chung
Do đó: ΔBNP~ΔBAC
=>\(\dfrac{S_{BNP}}{S_{BAC}}=\left(\dfrac{BN}{BA}\right)^2=\dfrac{1}{4}\)
=>\(S_{BNP}=\dfrac{1}{4}\cdot120=30\left(cm^2\right)\)
Xét ΔCPM và ΔCBA có
\(\dfrac{CP}{CB}=\dfrac{CM}{CA}\left(=\dfrac{1}{2}\right)\)
\(\widehat{C}\) chung
Do đó: ΔCPM~ΔCBA
=>\(\dfrac{S_{CPM}}{S_{CBA}}=\left(\dfrac{CP}{CB}\right)^2=\dfrac{1}{4}\)
=>\(S_{CPM}=\dfrac{1}{4}\cdot120=30\left(cm^2\right)\)
Ta có: \(S_{ANM}+S_{BNP}+S_{NMP}+S_{MPC}=S_{ABC}\)
=>\(S_{MPN}+30+30+30=120\)
=>\(S_{MPN}=30\left(cm^2\right)\)
Nối AP vì P là truing điểm của BC nên BP = PC .
Tương tự AN = NC; AM = MB
Hai tam giác ABP và APC có đáy bằng nhau và chung chiều cao nên diện tích của chúng bằng nhau và bằng : 240 : 2 = 120 ( cm2 )
Hai tam giác PAN và PNC có đáy bằng nhau và chung chiều cao nên \(S_{PAN}=S_{PNC}=120:2=60\left(cm^2\right)\)
Tương tự ta cũng có \(S_{PAM}=S_{PBM}=60cm^2\)
Như vậy,ta có : \(S_{PNC}=S_{PBM}=60cm^2\)
Nối BN, lí luận tương tự được : \(S_{PNC}=S_{MAN}=60cm^2\)
Ta có : \(S_{MNP}=S_{ABC}-\left(S_{PNC}+S_{MAN}+S_{PMB}\right)=240-\left(60+60+60\right)=60cm^2\)
Vậy 4 tam giác có diện tích bằng nhau và bằng 60cm2
LÌ XÌ NHA
tết rùi nè có ai lì xì mình không??