Cho tam giác ABC vuông tại A .gọi M là trung điểm của BC .biết BC =12cm
a) tính AM
b)gọi D là điểm đối xứng với A qua M chứng minh ABCD là hinh chữ nhât
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
a) Xét tứ giác AMBE có
D là trung điểm của đường chéo AB(gt)
D là trung điểm của đường chéo ME(M và E đối xứng nhau qua D)Do đó: AMBE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Ta có: AMBE là hình bình hành(cmt)
nên AM//BE và AM=BE(Hai cạnh đối của hình bình hành AMBE)
mà \(C\in EB\) và EB=EC(E là trung điểm của BC)
nên AM//CE và AM=CE
Xét tứ giác AMEC có
AM//CE(cmt)
AM=CE(cmt)
Do đó: AMEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Ta có: ΔABC cân tại A(gt)
mà AE là đường trung tuyến ứng với cạnh đáy BC(E là trung điểm của BC)
nên AE là đường cao ứng với cạnh BC(Định lí tam giác cân)
⇔AE⊥BC
hay \(\widehat{AEB}=90^0\)
Xét hình bình hành AMBE có \(\widehat{AEB}=90^0\)(cmt)
nên AMBE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
c) Ta có: E là trung điểm của BC(gt)
nên \(BE=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Ta có: ΔABE vuông tại E(\(\widehat{AEB}=90^0\))
nên \(S_{ABE}=\dfrac{AE\cdot EB}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
A, Xét tứ giác ABCD có
MB=MC=1/2BC(M là trung điểm BC-gt)
MD=MA=1/2AD( M là trung điểm AD-gt)
mà AD cắt BC tại M
->ABCD là hbh
Ta có ABCD là hình bh ( cmt)
mà có góc BAC = 90 độ( tam gáic ABC vuông tại A-gt)
-> ABCD là hcn(Đpcm)
B, Gọi I là giao điêm của AB và EM
Ta có góc BIM=90 độ( do M đối E qua AB-gt)
góc BAC = 90 độ( tam giác ABC vuông tại A-gt)
mà hai góc vị trí đồng vị
-> IM song song AC
Xét tam giác BAC có
M là trung điểm BC(gt)
IM song song AC( cmt)
-> I là trung điểm AB
Ta có
IA=IB=1/2AB( I là trung điểm AB-cmt)
IE=IM=1/2EM(M đối E qua AB-gt)
mà EM cắt AB tại I
-> EAMB là hình bình hành
Mà AB vuông góc EM ( M đối E qua AB-gt)
-> EAMB là hình thoi( đpcm)
Xong rùi nha bn
Câu 5:
\(A=-x^2+x-1=-\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{3}{4}\\ A=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\left(đpcm\right)\)
a: Xét ΔABC vuông tại A có \(BC^2=AB^2+AC^2\)
hay BC=20(cm)
Xét ΔABC có
D là trung điểm của BC
I là trung điểm của AB
Do đó: DI là đường trung bình
=>DI=AC/2=8(cm)
Ta có: ΔABC vuông tại A
mà AD là đường trung tuyến
nên AD=BC/2=10(cm)
b: Xét tứ giác ABKC có
D là trung điểm của BC
D là trung điểm của AK
Do dó: ABKC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABKC là hình chữ nhật
c: Xét tứ giác ABCE có
AB//CE
AB=CE
Do đó: ABCE là hình bình hành