Cho hình bình hành ABCD . Trong hbh ABCD vẽ hbh A'B'C'D' . Gọi M,N,P,Q,lần lượt là trung điểm nối từ A đến A' ,B đến B' , C đến C' , D đến D' . Chứng minh MNPQ là hbh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy E là trung điểm A'D ; F là trung điểm BC'.
Dễ dàng chứng minh được \(\Delta EQM=\Delta FNP\left(c.g.c\right)\)
Từ đó suy ra \(MQ=NP\)
CMTT có \(MN=PQ\)
Do đó \(MNPQ\)là hình bình hành.
Vậy ...
CM: a) Ta có: AM = MB = 1/2AB (gt)
ND = NC = 1/2DC (gt)
mà AB = CD (gt) => 1/2AB = 1/2CD
=> AM = MB = ND = NC
Xét tứ giác AMCN có: AM = MC (cmt)
AM // MC (gt)
=> tứ giác AMCN là hình bình hành
b) Xét tứ giác MBND có : MB // DM (gt)
MB = DN (cmt)
=> tứ giác MBND là hình bình hành