K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2015

a2S1 = a2 + a4 + a6 +...+a2n+2

=> a2S1 - S1 = (a2 + a4 + a6 +...+a2n+2)-(1+a2 + a4 + a6 +...+a2n)

S1(a2-1) = a2n+2-1

=> S1 = (a2n+2-1):(a2-1)

 Câu 2 cũng nhân với a2 là được

17 tháng 7 2016

a2S1 = a2 + a4 + a6 +...+a2n+2

=> a2S1 - S1 = (a2 + a4 + a6 +...+a2n+2)-(1+a2 + a4 + a6 +...+a2n)

S1(a2-1) = a2n+2-1

=> S1 = (a2n+2-1):(a2-1)

3 tháng 8 2023

\(a)\) Công thức tính số hạng của một dãy số là : (Số cuối-số đầu ) chia khoảng cách rồi cộng thêm 1 .

Do đó : Số hạng của dãy số A là : \(\dfrac{\left(2n+1\right)-1}{2}+1=n+1\)

            Số hạng của dãy số B là : \(\dfrac{2n-2}{2}+1=n-1+1=n\)

\(b)\) Ta có : Số hạng của dãy số A là : \(n+1\)

   Do đó : tổng của A là : \(\dfrac{\left(2n+1+1\right).\left(n+1\right)}{2}=\dfrac{2\left(n+1\right)\left(n+1\right)}{2}\)

\(=\left(n+1\right)^2\) 

Vì n thuộc N nên tổng của A là : một số chính phương . 

\(c)\) Ta có : Số hạng của dãy số B là : n

     Do đó : Tổng của dãy số B là : \(\dfrac{n.\left(2n+2\right)}{2}=\dfrac{2.n.\left(n+1\right)}{2}\)

\(=n.\left(n+1\right)\) 

Ta thấy : n(n+1) là tích của 2 số tự nhiên liên tiếp nên để B là số chính phương thì khi và chỉ khi n hoặc n+1 bằng 0 . 

Ta thấy chúng đều không thoả mãn .

vậy.............

            

3 tháng 8 2023

Bạn xem lại câu A+B mới là số chính phương k?

27 tháng 5 2023

n=32 nha bạn

 

6 tháng 10 2018

a,  29 - 1 = 511 không chia hết cho 3.

b, \(5^6-10^4=5^6-5^4.2^4\)

                     \(=5^4\left(5^2-2^4\right)=5^4.9⋮9\)

c, \(\left(n+6\right)^2-\left(n-6\right)^2=\left(n+6+n-6\right)\left(n+6-n+6\right)=2n.12=24n⋮24\)

d,\(\left(3n+4\right)^2-16=9n^2+24n+16-16=9n^2+24n⋮3\)

Chúc bạn học tốt