(2x-3)^2=49
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) `(2x+5)^3-(2x-5)^3-(120x^2+49)`
`=(2x+5-2x+5)[(2x+5)^2+(2x+5)(2x-5)+(2x-5)^2]-(120x^2+49)`
`=10(12x^2+25)-(120x^2+49)`
`=120x^2+250-120x^2-49`
`=201`
b) `(4-5x)^2-(3+5x)^2=(4-5x+3+5x)(4-5x-3-5x)=7.(-10x+1)=-70x+7`
Lời giải:
a.
$(2x+5)^3-(2x-5)^3-(120x^2+49)$
$=[(2x+5)-(2x-5)][(2x+5)^2+(2x+5)(2x-5)+(2x-5)^2]-(120x^2+49)$
$=10(4x^2+20x+25+4x^2-25+4x^2-20x+25)-(120x^2+49)$
$=10(12x^2+25)-(120x^2+49)=250-49=201$
b.
$(4-5x)^2-(3+5x)^2=[(4-5x)+(3+5x)][(4-5x)-(3+5x)]$
$=7(1-10x)$
3.|x+1|-2=4
3.|x+1|=4+2
3.|x+1|=6
|x+1|=6:3
|x+1|=2
Trường hợp 1 x+1=2
x=2-1
x=1
trường hợp 2
x+1=-2
x=(-2)-1
x=-3
==> x thuộc {1; -3}
k mk nha chúc học tốt
\(\left(2x-\dfrac{3}{2}\right)^2=\dfrac{49}{81}\\ \Rightarrow\left(2x-\dfrac{3}{2}\right)^2=\left(\dfrac{7}{9}\right)^2\\ \Rightarrow2x-\dfrac{3}{2}=\pm\dfrac{7}{9}\\ \Rightarrow\left[{}\begin{matrix}2x-\dfrac{3}{2}=\dfrac{7}{9}\\2x-\dfrac{3}{2}=-\dfrac{7}{9}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x=\dfrac{41}{18}\\2x=\dfrac{13}{18}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{41}{36}\\x=\dfrac{13}{36}\end{matrix}\right.\)
(2x-3/2)2=49/81=(7/9)2
=>2x-3/2=7/9 hoặc 2x-3/2=-7/9
=>x=41/36 hoặc x=13/36.
2x - 49 = 5 . 32
2x - 49 = 5 . 9
2x - 49 = 45
2x = 45 + 49
2x = 94
--> x = 94 : 2 = 47
Vậy x = 47
\(x\left(x-2\right)\left(x+2\right)-\left(x-3\right)\left(x^2+3x+9\right)\)
\(=\left(x^2-2x\right)\left(x+2\right)-\left(x-3\right)\left(x^2+3x+9\right)\)
\(=x^3+2x^2-2x^2-4x-x^3-3x^2-9x+3x^2+9x+27\)
\(=9x-4x+27=5x+27\)
\(\left(2x+7\right)\left(4x^2-14x+49\right)-2x\left(2x-1\right)\left(2x+1\right)\)
\(=\left(2x+7\right)\left(4x^2-14+49\right)-\left(4x^2-2x\right)\left(2x+1\right)\)
\(8x^3-28x+98x+28x^2-98+343-8x^3-4x^2+4x^2+2x\)
\(\left(98x-28x+2x\right)+343=72x+343\)
3: =>x(x+1)=0
=>x=0 hoặc x=-1
4: =>(2x-3)(x+2)=0
=>x=3/2 hoặc x=-2
6: =>6x=7 hoặc 6x=-7
=>x=7/6 hoặc x==7/6
a: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\cdot\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
=>x=3 hoặc x=-10/7
b: \(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow13\left(x+3\right)+x^2-9-12x-42=0\)
\(\Leftrightarrow x^2-12x-51+13x+39=0\)
\(\Leftrightarrow x^2+x-12=0\)
=>(x+4)(x-3)=0
=>x=-4
a) \(\left(2x-5\right)^2=49\)
\(\left(2x-5\right)^2=\left(\pm7\right)^2\)
\(=>2x-5=7\) hoặc \(2x-5=-7\)
\(\cdot2x-5=7\) \(\cdot2x-5=-7\)
\(2x=5+7\) \(2x=-7+5\)
\(2x=12\) \(2x=-2\)
\(x=12:2\) \(x=-2:2\)
\(x=6\) \(x=-1\)
Vậy x=6 hoặc x=-1
b/ \(\left(2x+5\right)^2-\left(1-2x\right)^2=10\)
\(4x^2+20x+25-\left(1-4x+4x^2\right)=10\)
\(4x^2+20x+25-1+4x-4x^2=10\)
\(24x+24=10\)
\(24x=10-24\)
\(24x=-14\)
\(x=\frac{-14}{24}\)
\(x=\frac{-7}{12}\)
c/ \(\left(9-2x\right)^3=27\)
\(\left(9-2x\right)^3=3^3\)
\(9-2x=3\)
\(2x=9-3\)
\(2x=6\)
\(x=6:2\)
\(x=3\)
b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)
d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)
\(\Leftrightarrow x^2+14x+68=0\)
hay \(x\in\varnothing\)
Lời giải:
$(2x-3)^2=49=7^2=(-7)^2$
$\Rightarrow 2x-3=7$ hoặc $2x-3=-7$
$\Rightarrow x=5$ hoặc $x=-2$
(2x-3)2=49
(2x-3)2=72
2x-3=7
2x=7+3
2x=10
x=10:2
x=5
NHớ tick mik nha