Chứng minh rằng tổng khoảng cách từ môt điểm bên trong đên các cạnh của môt tam giác đêu- không đổi!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng tổng khoảng cách từ môt điểm bên trong đên các cạnh của môt tam giác đêu- không đổi!
Chứng minh rằng tổng khoảng cách từ môt điểm bên trong đên các cạnh của môt tam giác đêu- không đổi!
cũ đúng thôi, bài nài cũng xử dụng đến kiến thức lớp 5 mak {về diện tích} nhưng có điều là lớp 5 chưa hok t/g đều. bài nài có 2 cách. 1 cách xử dụng kiến thức lớp 7 còn 1 cách xử dụng kiến thức lớp 5. {nếu thì mik sẽ giải cho}
Chứng minh rằng tổng khoảng cách từ một điểm bên trong đến các cạnh của một tam giác đều- không đổi!
Gọi các cạnh của tam giác đều là a. Từ một điểm bất kỳ trong tam giác đều, hạ các đường cao (khoảng cách) tới các cạnh, lần lượt là h1, h2, h3.
Ta có S1 = a x h1/2; S2 = a x h2/2, S3 = a xh3/2.
S1 + S2 + S3 = a x (h1 + h2 + h3) /2
Mà S1 + S2+ S3 = S tam giác đều đã cho (không đổi), a không đổi
Suy ra, tổng (h1 + h2 + h3) không đổi.
Vậy h1,h2,h3 đều không thay đổi
Từ một điểm O bên trong 1 tam giác đều ABC kẻ các đường vuông góc với các cạnh BC; AB; AC lần lượt các cạnh trên theo thứ tự lần lượt là E; K; F
Ta có \(S_{ABC}=S_{OBC}+S_{OAB}+S_{OAC}=\frac{1}{2}.BC.OE+\frac{1}{2}AB.OK+\frac{1}{2}AC.OF\)
Mà BC=AB=AC
=> \(S_{ABC}=\frac{1}{2}BC.OE+\frac{1}{2}BC.OK+\frac{1}{2}BC.OF=\frac{1}{2}.BC.\left(OE+OK+OF\right)\)
=> \(\left(OE+OK+OF\right)=\frac{2.S_{ABC}}{BC}\)
Mà SABC và BC không đổi => OE+OK+OF không đổi
Xét tam giác ABC, M là điểm trong tam giác, MD,ME,MF lần lượt là hình chiếu của M lên AB,AC,BC
Kẻ đường cao \(AH\) const
Đặt \(AB=AC=BC=a\)
\(S_{ABC}=S_{AMB}+S_{AMC}+S_{BMC}\\ =\dfrac{1}{2}\left(DM.AB+ME.AC+MF.BC\right)\\ =\dfrac{1}{2}a\left(DM+ME+MF\right)\\ =\dfrac{1}{2}a.AH\\ \Rightarrow DM+ME+MF=AH\\ \RightarrowĐpcm\)
Gọi các cạnh của tam giác đều là a. Từ một điểm bất kỳ trong tam giác đều, hạ các đường cao (khoảng cách) tới các cạnh, lần lượt là h1, h2, h3.
Ta có S1 = a x h1/2; S2 = a x h2/2, S3 = a xh3/2.
S1 + S2 + S3 = a x (h1 + h2 + h3) /2
Mà S1 + S2+ S3 = S tam giác đều đã cho (không đổi), a không đổi
Suy ra, tổng (h1 + h2 + h3) không đổi.