1/1.17+1/2.18+....+1/1984.2000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
\(A=124.\left(\frac{1}{1.1985}+\frac{1}{2.1986}+\frac{1}{3.1987}+...+\frac{1}{16.2000}\right)\)
\(=\frac{124}{1984}.\left(\frac{1984}{1.1985}+\frac{1984}{2.1986}+\frac{1984}{3.1987}+...+\frac{1984}{16.2000}\right)\)
\(=\frac{1}{16}.\left(1-\frac{1}{1985}+\frac{1}{2}-\frac{1}{1986}+\frac{1}{3}-\frac{1}{1987}+...+\frac{1}{16}-\frac{1}{2000}\right)\)
\(=\frac{1}{16}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}\right)\left(\frac{1}{1985}+\frac{1}{1986}+\frac{1}{1987}+...+\frac{1}{2000}\right)\)
\(B=\frac{1}{1.17}+\frac{1}{2.18}+...+\frac{1}{1984.2000}\)
\(=\frac{1}{16}.\left(\frac{16}{1.17}+\frac{16}{2.18}+...+\frac{16}{1984.2000}\right)\)
\(=\frac{1}{16}.\left(1-\frac{1}{17}+\frac{1}{2}-\frac{1}{18}+...+\frac{1}{1984}-\frac{1}{2000}\right)\)
\(=\frac{1}{16}.\left(1-\frac{1}{17}+\frac{1}{2}-\frac{1}{18}+...+\frac{1}{1984}-\frac{1}{2000}\right)\)
\(=\frac{1}{16}.\left(1+\frac{1}{2}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{1984}\right)-\left(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{1984}\right)-\left(\frac{1}{1985}+\frac{1}{1986}+...+\frac{1}{2000}\right)\)
\(=\frac{1}{16}.[\left(1+\frac{1}{2}+...+\frac{1}{16}\right)-\left(\frac{1}{1985}+\frac{1}{1986}+...+\frac{1}{2000}\right)]\)
`=>A=B`