x+y+z=1/x+1/y+1/z.Tính x(1-yz)(y^2-xz)-y(1-xz)(x^2-yz)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực hiện phép tính:(1)/((y-z)(x^2+xz-y^2-yz))+(1)/((z-x)(y^2+zy-z^2-xz))+(1)/((x-y)(x^2+yz-z^2-xy|)
Bạn tham khảo câu trả lời của anh Phan Thanh Tịnh nhé
vô phần thống kê hỏi đáp của mình để coi hình nhé
\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)
\(\Leftrightarrow\left(x^2-yz\right)\left(y-xyz\right)=\left(y^2-xz\right)\left(x-xyz\right)\)
\(\Leftrightarrow x^2y-x^3yz-y^2z+xy^2z^2-xy^2+xy^3z+x^2z-x^2yz^2=0\)
\(\Leftrightarrow xy\left(x-y\right)-xyz\left(x^2-y^2\right)+z\left(x^2-y^2\right)-xyz^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[xy-xyz\left(x+y\right)+z\left(x+y\right)-xyz^2\right]=0\)
\(\Leftrightarrow xy-xyz\left(x+y\right)+z\left(x+y\right)-xyz^2=0\left(x\ne y\Rightarrow x-y\ne0\right)\)
\(\Leftrightarrow xy+yz+xz=xyz\left(x+y\right)+xyz^2\)
\(\Leftrightarrow\frac{ay+yz+xz}{xyz}=\frac{xyz\left(x+y\right)+xyz^2}{xyz}\left(xyz\ne0\right)\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z\)
Câu 1:
\(a^2+b^2-a^2b^2+ab-a-b\)
\(=a^2\left(1-b^2\right)+b\left(b-1\right)+a\left(b-1\right)\)
\(=-a^2\left(b-1\right)\left(b+1\right)+\left(b-1\right)\left(a+b\right)\)
\(=\left(b-1\right)\left(-a^2b-a^2+a+b\right)\)
\(=\left(b-1\right)\cdot\left[-b\left(a^2-1\right)-a\left(a-1\right)\right]\)
\(=\left(b-1\right)\left(a-1\right)\left[-b\left(a+1\right)-a\right]\)
Áp dụng t/c dãy tỉ số bằng nhau có:
\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}=\frac{x^2-yz-y^2+xz}{x-xyz-y\left(1-xz\right)}=\frac{\left(x-y\right)\left(x+y\right)+z\left(x-y\right)}{x-xyz-y+xyz}=\frac{\left(x-y\right)\left(x+y+z\right)}{x-y}=x+y+z\)
=> \(\frac{x^2-yz}{x\left(1-yz\right)}=x+y+z\)
<=> \(\frac{x^2-yz}{x\left(1-yz\right)}-\frac{\left(x+y+z\right)x\left(1-yz\right)}{x\left(1-yz\right)}=0\)
<=> \(\frac{x^2-yz-\left(x^2+yx+zx\right)\left(1-yz\right)}{x\left(1-yz\right)}\)=0
<=> \(x^2-yz-x^2+x^2yz-xy+xy^2z-xz+xyz^2=0\)
<=> \(-yz-xy-xz+xyz\left(x+y+z\right)\)=0
<=> \(xyz\left(x+y+z\right)=yz+xy+xz\)
<=>\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)( chia cả hai vế cho xyz với x,y,z khác 0)