K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2022

1+1=

 

 

 

12 tháng 2 2018

Đáp án D

Ta có liên tục trên đoạn .

Ta có

.

 

.

Vậy m=2 và M = 11, do đó .

NV
22 tháng 12 2020

Chắc đề bài là \(Q=\dfrac{3}{9x^2+6xy+y^2}+\dfrac{3}{3x^2+6xy+2y^2}\)

Từ giả thiết ta có:

\(2x^3+2xy^2+xy^2+y^3=2\left(x^2+y^2\right)\)

\(\Leftrightarrow2x\left(x^2+y^2\right)+y\left(x^2+y^2\right)=2\left(x^2+y^2\right)\)

\(\Leftrightarrow2x+y=2\)

Do đó:

\(Q=3\left(\dfrac{1}{9x^2+6xy+y^2}+\dfrac{1}{3x^2+6xy+2y^2}\right)\)

\(Q\ge\dfrac{3.4}{12x^2+12xy+3y^2}=\dfrac{4}{\left(2x+y\right)^2}=1\)

\(Q_{min}=1\) khi \(\left\{{}\begin{matrix}2x+y=2\\9x^2+6xy+y^2=3x^2+6xy+2y^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{6}-2\\y=6-2\sqrt{6}\end{matrix}\right.\)

16 tháng 2 2018

Ta có:

x 2 - x y + 3 = 0 1 2 x + 3 y - 14 ≤ 0 2

Do x,y>0 nên ⇔ x 2 + 3 x  thay vào (2) ta được:

2 x + 3 . x 2 + 3 x - 14 ≤ 0

⇔ 2 x 2 + 3 x 2 + 9 - 14 x x ≤ 0

⇔ 5 x 2 - 14 x + 9 ≤ 0 ⇔ 1 ≤ x ≤ 9 5

Thay y = x 2 + 3 x  vào P ta được:

P = 3 x 2 y - x y 2 - 2 x 3 + 2 x

= 3 x 2 . x 2 + 3 x - x . x 2 + 3 x 2 - 2 x 3 + 2 x

P ' = 5 + 9 x 2 > 0  với mọi x nên hàm số P=P(x) đồng biến trên  1 ; 9 5

Vậy 

Tổng .

Chọn đáp án B.

29 tháng 4 2019

Chọn đáp án D.

4 tháng 7 2018

Đáp án D

9 tháng 3 2017

Đáp án B

Phương pháp:

- Rút  y từ phương trình đầu, thay vào bất phương trình sau tìm điều kiện của x .

- Thay y ở trên vào biểu thức P đưa về biến x .

- Sử dụng phương pháp hàm số đánh giá P tìm GTLN, GTNN.

12 tháng 3 2022

Bài 2 : 

a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)

Dấu ''='' xảy ra khi x = 2 

b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)

Dấu ''='' xảy ra khi x = -1 

12 tháng 3 2022

 Bài 1 : 

a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)

c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)

a: Ta có: \(A=\left(x-1\right)\left(x-3\right)+11\)

\(=x^2-4x+3+11\)

\(=x^2-4x+4+8\)

\(=\left(x-2\right)^2+8\ge8\forall x\)

Dấu '=' xảy ra khi x=2

b: Ta có: \(B=-4x^2+4x+5\)

\(=-\left(4x^2-4x+1-6\right)\)

\(=-\left(2x-1\right)^2+6\le6\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)