Giá trị lớn nhất của biểu thức :
B= -(x-2016)^2 - 3,1
Cảm ơn trước nha~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(M=\left(x-2\right)^2-22\)
Có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2-22\ge-22\forall x\)
hay GTNN của M là -22
Dấu "=" xảy ra tại \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy GTNN của M là -22 tại x=2.
b, \(N=9-|x+3|\)
Có: \(|x+3|\ge0\forall x\)
\(\Rightarrow9-|x+3|\le9\forall x\)
hay GTLN của N là 9
Dấu "=" xảy ra tại \(|x+3|=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy GTLN của N là 9 tại x = -3.
Ta có : \(|x-1|\ge0=>-\frac{2}{5}|x-1|\le0\)
\(=>-\frac{2}{5}|x-1|+1\le1\)
Dấu "=" xảy ra \(< =>x=1\)
Vậy Max A = 1 khi x = 1
giá trị lớn nhất của biểu thức là - 3,1
dấu bằng xảy ra khi x-2016 = 0
=> x= 2016
4-\(x^2\)+2x
=-x\(^2\)+2x-1+5
=-(x\(^2\)-2x+1)+5
=-(x-1)\(^2\)+5
có(x-1)\(^2\)\(\ge\)0\(\forall\)x\(\in\)R
=>-(x-1)\(^2\)\(\le\)0\(\forall\)x\(\in\)R
=>-(x-1)\(^2\)+5\(\le\)5\(\forall\)x\(\in\)R
vậy GTLN của bt trên là 5 \(\Leftrightarrow\)x=1
ta có: \(B=-\left(x-2016\right)^2-3,1\) ≤ 3,1 (vì \(\left(x-2016\right)^2\)≥0 nên -\(-\left(x-2016\right)^2=< 0\))
dấu "=" xảy ra <=> x-2016=0
<=> x=2016
Vậy MaxB=-3,1 <=> x=2016
Ta có :
\(\left(x-2016\right)^2\ge0\)
\(-\left(x-2016\right)^2\le0\)
\(-\left(x-2016\right)^2-3,1\le-3,1\)
\(\Rightarrow Max_B=-3,1\)
\(\Leftrightarrow-\left(x-2016\right)^2=0\)
\(\Rightarrow\left(x+2016\right)^2=0\)
\(\Rightarrow x+2016=0\)
\(\Rightarrow x=-2016\)
GTLN=-3,1