K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2015

đề sai phải bằng bao nhiêu chứ

26 tháng 9 2021

câu này lm kiểu j v bạn , bạn cs thể hương dẫn cho mk đc ko ạ

2 tháng 7 2019

A=\(x^2+y^2+z^2+2xy+2yz+2xz\)

B=\(x^2+y^2+z^2-2xy+2yz-2xz\)

C=\(x^2+y^2+z^2-2xy-2yz+2xz\)

D=\(x^2+4y^2+1+2x-4y-4xy\)

2 tháng 7 2019

TL:

\(A=x^2+y^2+z^2+2xy+2yz+2xz\) 

\(B=x^2+y^2+z^2-2xy+2yz-2xz\) 

\(C=x^2+y^2+z^2-2xy-2yz+2xz\) 

\(D=x^2+1+4y^2+2x-4y+4xy\) 

hc tốt

30 tháng 6 2023

`(x+y+z)(x+y+z)`

`=(x+y+x)^2`

`=(x+y)^2(x+z)^2(z+y)^2`

AH
Akai Haruma
Giáo viên
30 tháng 6 2023

Lời giải:
$(x+y+z)(x+y+z)=(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+xz)$

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

 Số đơn thức đồng dạng với \({a^4}\) trong tổng là  \(C_4^0 = 1\)

 Số đơn thức đồng dạng với \({a^3}b\) trong tổng là  \(C_4^4 = 1\)

 Số đơn thức đồng dạng với \({a^2}{b^2}\) trong tổng là  \(C_4^2 = 6\)

 Số đơn thức đồng dạng với \(a{b^3}\) trong tổng là  \(C_4^3 = 1\)

 Số đơn thức đồng dạng với \({b^4}\) trong tổng là \(C_4^4 = 1\)

9 tháng 7 2023

a) (x² + 2)²

= (x²)² + 2.x².2 + 2²

= x⁴ + 4x² + 4

b) (x + y + z)²

= [(x + y) + z]²

= (x + y)² + 2(x + y).z + z²

= x² + 2xy + y² + 2xz + 2yz + z²

= x² + y² + z² + 2xy + 2xz + 2yz

30 tháng 7 2023

a. (2x+3y)2= (2x)2+2.2x.3y+(3y)2

=4x2+12xy+9y2

b. 2(\(\dfrac{1}{2}\)x2+y)(x2-2y)

=(x2+2y)(x2-2y)

=x4-4y2

c, (x+y+z)2= [(x+y)+z]2

=(x+y)2+2(x+y)z+z2

=x2+2xy+y2+2xz+2yz+z2

=x2+y2+z2+2xy+2yz+2xz

19 tháng 7 2017

a, (x+y+z)2

=\(x^2+y^2+z^2+2xy+2xz+2yz\)

b, (x+yz)2

=\(x^2+y^2+z^2+2xy-2xz-2yz\)

c, (xyz)2

=\(x^2+y^2+z^2-2xy-2xz+2yz\)

chúc bạn học tốt ạ

19 tháng 7 2017

a) Ta có: \(\left(x+y+z\right)^2=\left[\left(x+y\right)+z\right]^2\)

\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)

\(=x^2+2xy+y^2+2xz+2yz+z^2\)

\(=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

b) Ta có: \(\left(x+y-z\right)^2=\left[\left(x+y\right)-z\right]^2\)

\(=\left(x+y\right)^2-2\left(x+y\right)z+z^2\)

\(=x^2+2xy+y^2-2xz-2yz+z^2\)

\(=x^2+y^2+z^2+2\left(xy-yz-zx\right)\)

c) Ta có: \(\left(x-y-z\right)^2=\left[\left(x-y\right)-z\right]^2\)

\(=\left(x-y\right)^2-2\left(x-y\right)z+z^2\)

\(=x^2-2xy+y^2-2xz-2yz+z^2\)

\(=x^2+y^2+z^2-2\left(xy+yz+zx\right)\)

16 tháng 8 2016

1. \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx\)

2. \(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy-2yz+2xz\)

3. \(\left(x+y-z\right)^2=x^2+y^2+z^2+2xy-2yz-2zx\)

4. \(\left(x-y-z\right)^2=x^2+y^2+z^2-2xy+2yz-2zx\)

5./6.  Kết hợp từ trên

21 tháng 7 2018

1) \(\left[\left(a+b\right)-c\right]^2=\left(a+b\right)^2-2c\left(a+b\right)+c^2\)

\(=\left(a^2+2ab+b^2\right)-2ac-2bc+c^2\)

\(=a^2+b^2+c^2+2ab-2ac-2bc\)

2)Phần này tg tự

3)\(\left(x+y+z\right)\left(x+y-z\right)=\left(x+y\right)^2-z^2=x^2+2xy+y^2-z^2\)