Cho \(\Delta ABC\) có \(\widehat{A}\)=\(100^o\). Gọi CD là tia đối của tia CB. Tia phân giác của \(\widehat{B}\) cắt phân giác của \(\widehat{ACD}\)tại K.
Tính \(\widehat{BAK}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\widehat{A}+\widehat{ABC}+\widehat{C}=180^0\Rightarrow180^0-3\widehat{C}+\widehat{C}=180^0-70^0=110^0\)
\(\Rightarrow2\widehat{C}=70^0\Rightarrow\widehat{C}=35^0\Rightarrow\widehat{A}=180^0-3\cdot35^0=75^0\)
Ta có BE là p/g nên \(\widehat{B_1}=\widehat{B_2}=\dfrac{1}{2}\widehat{ABC}=35^0\)
Mà \(ED//BC\) nên \(\widehat{B_2}=\widehat{E_2}=35^0\left(so.le.trong\right)\left(1\right)\)
Ta có \(ED//BC\Rightarrow\widehat{E_1}=\widehat{C}=35^0\left(đồng.vị\right)\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\widehat{E_1}=\widehat{E_2}\left(=35^0\right)\)
Vậy ...
gọi Ax là tia đối của tia AB
Xét
BK là: tia phân giác B(ˆ ben trong)
CK là : tia phân giác Cˆ( bên ngoài )
=> AK cũng là tia phân giác Aˆ (ben ngoài)
Rut ra:
xAKˆ = KACˆ
vay = xACˆ2 = 180o − BACˆ2=80o2=40o
Mà BAKˆ=BACˆ+KACˆ
=:
=> hinh BAKˆ =100 đo+400=140do
Gọi Ax là tia đối của tia AB
Xét △ ABC có :
BK là tia phân giác Bˆ trong
CK là tia phân giác Cˆ ngoài
AK cũng là tia phân giác Aˆ ngoài
xAKˆ=KACˆ=xACˆ2=180o−BACˆ2=80o2=40o
Mà BAKˆ=BACˆ+KACˆ
BAKˆ=100o+400=140o
tích nha
AD/DB=AM/MB
AE/EC=AM/MC
mà MB=MC
nên AD/DB=AE/EC
=>DE//BC
Để DE là đừog trung bình của ΔABC thì AD/DB=AE/EC=1
=>AM/MB=AM/MC=1
=>ΔABC vuông tại A
Hình bạn tự vẽ.
Đây là lời giải của mình :
Trước hết biết được góc A thì tính được \(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{A}=80^o\)
\(\widehat{ACx}=\widehat{A}+\widehat{ABC}=100^o+\widehat{ABC}\) ( góc ngoài tam giác )
\(\Rightarrow\frac{\widehat{ACx}}{2}=\widehat{ACN}=50^o+\frac{\widehat{ABC}}{2}\)
Do đó \(\widehat{BCN}=\widehat{ACB}+\widehat{ACN}=50^o+\frac{\widehat{ABC}}{2}+\widehat{ACB}\)
BI là phân giác góc ABC nên \(\widehat{NBC}=\frac{\widehat{ABC}}{2}\)
Xét \(\Delta BCN:\)
\(\widehat{BNC}=180^o-\left(\widehat{NBC}+\widehat{BCN}\right)=180^o-\left(\frac{\widehat{ABC}}{2}+\frac{\widehat{ABC}}{2}+\widehat{ACB}+50^o\right)\)
\(=180^o-\left(\widehat{ACB}+\widehat{ABC}+50^o\right)=180^o-\left(80^o+50^o\right)=50^o\)
Vậy ...
a) Nối A và D lại, ta đc: ΔABD & ΔADC
Ta có: D là trung điểm BC => BD=DC
Xét ΔABD & ΔADC có:
AB=AC(gt) ; BD=DC ; AD=AD
=> ΔADB = ΔADC
1a. Xét △ABD và △ACD có:
\(AB=BC\left(gt\right)\)
\(\hat{BAD}=\hat{CAD}\left(gt\right)\)
\(AD\) chung
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
b/ Từ a suy ra \(BD=CD\) (hai cạnh tương ứng).
2a. Xét △ABD và △EBD có:
\(AB=BE\left(gt\right)\)
\(\hat{ABD}=\hat{EBD}\left(gt\right)\)
\(BD\) chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
b/ Từ a suy ra \(\hat{DEB}=90^o\) (góc tương ứng với góc A).
c/ Xét △ABI và △EBI có:
\(AB=BE\left(gt\right)\)
\(\hat{ABI}=\hat{EBI}\left(do\text{ }\hat{ABD}=\hat{EBD}\right)\)
\(BI\) chung
\(\Rightarrow\Delta ABI=\Delta EBI\left(c.g.c\right)\)
\(\Rightarrow\hat{AIB}=\hat{EIB}=\dfrac{180^o}{2}=90^o\)
Vậy: \(BD\perp AE\)