tim x,y nguyen biet 7x2 +y2 +4xy +12x +5=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Để A là số nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2;4\right\}\)
hay \(x\in\left\{16;4;25;1;49\right\}\)
Ta có : x . ( y - 3 ) = 5
Ta lập bảng :
y - 3 | 1 | - 1 | 5 | - 5 |
x | 5 | - 5 | 1 | - 1 |
y | 4 | 2 | 8 | - 2 |
Vậy : ................
Vì \(x>0\) và \(x\cdot\left(y-3\right)=5\Rightarrow y-3>0\)
Ta xét x thuộc những ước dương của 5 \(\Rightarrow x=\left\{1,5\right\}\)
\(TH1:x=1\Rightarrow y-3=\frac{5}{1}=5\Rightarrow y=5+3=8\left(TM\right)\)
\(TH2:x=5\Rightarrow y-3=\frac{5}{5}=1\Rightarrow y=1+3=4\left(TM\right)\)
Vậy \(\left(x,y\right)=\left(1,8\right)\) hoặc \(\left(5,4\right)\)
a,\(\hept{\begin{cases}x+2>0\\x+5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-2\\x>-5\end{cases}}\)
b,=> x-1 và y-2 thuộc ước của 12.Ta có bảng sau:
x-1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
y-2 | -1 | -2 | -3 | -4 | -6 | -12 | 12 | 6 | 4 | 3 | 2 | 1 |
x | -11 | -5 | -3 | -2 | -1 | 0 | 2 | 3 | 4 | 5 | 7 | 13 |
y | 1 | 0 | -1 | -2 | -4 | -10 | 14 | 8 | 6 | 5 | 4 | 3 |
\(5x^2+6x-4xy-2y+2+y^2=0\)
\(\Leftrightarrow4x^2+x^2+2x+4x-4xy-2y+1+1+y^2=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(4x-2y\right)+\left(x^2+2x+1\right)+1=0\)
\(\Leftrightarrow\left(2x-y\right)^2+2\left(2x-y\right)+1+\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(2x-y+1\right)^2+\left(x+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y+1\right)^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2.\left(-1\right)-y+1=0\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2-y+1=0\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1-y=0\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=-1\end{matrix}\right.\)
Vậy \(x=-1\) và \(y=-1\)
(x+3).(y+1)=3
--->x+3,y+1 thuộc Ư(3)={1,3,-1,-3}
Ta có bảng sau
x+3 1 -1
y+1 3 -3
y 2 -4
x -2 -4
--->(x,y) thuộc(-2,2),(-4,-4)
*) Ta có a(b-2)=3
Vì a,b là số nguyên => a,b-2 thuộc Ư(3)={-3;-1;1;3}
Vì a>0 => a={1;3}
Ta có bảng
a | 1 | 3 |
b-2 | 3 | 1 |
b | 5 | 3 |
b) (x-2)(y+1)=23
=> x-2;y+1 thuộc Ư(23)={-23;-1;1;23}
Ta có bảng
x-2 | -23 | -1 | 1 | 23 |
x | -21 | 1 | 3 | 25 |
y+1 | -1 | -23 | 23 | 1 |
y | -2 | -24 | 22 | 0 |
1. \(a\left(b-2\right)=3\)
Ta có : \(3=\orbr{\begin{cases}3\cdot1\\-3\cdot\left(-1\right)\end{cases}}\)
* a = 3 ; b - 2 = 1 => b = 3
* a = 1 ; b - 2 = 3 => b = 5
* a = -1 ; b - 2 = -3 => b = -1
* a = -3 ; b - 2 = -1 => b = 1
2. \(\left(x-2\right)\left(y+1\right)=23\)
Ta có : \(23=\orbr{\begin{cases}23\cdot1\\-23\cdot\left(-1\right)\end{cases}}\)
* x - 2 = 23 ; y + 1 = 1 => x = 25 ; y = 0
* x - 2 = 1 ; y + 1 = 23 => x = 3 ; 22
* x - 2 = -23 ; y + 1 = -1 => x = -21 ; y = -2
* x - 2 = -1 ; y + 1 = -23 => x = 1 ; y = -24
-2/x=y/3
=> -2.3 = xy
xy= -6
Mà x>0>y => x là số nguyên âm còn y là số nguyên dương
Lập bảng ( cái này bn tự lâp)
=> Các cặp số nguyên x,y là: x=-2,y=3 ; x= -3,y=2; x=-1,y=6 ; x=-6,y= 1
Do x-y = 4 => x= 4+y
thjays x=4+y vào x-3/y-2=3/2, có:
x-3/y-2=3/2 = 4+y-3/y-2 = 3/2 = y+1/y-2=3/2
=> 2(y+1)= 3(y-2)
2y+2 = 3y-6
3y-2y = 2+6
y=8
thay y= 8 vào x=4+y, có:
x= 4+ 8 = 12
vạy x=12; y=8
x.(x+2y) = -3
x, y nguyên nên ta có bảng sau
x | 1 | -1 | 3 | -3 |
x+2y | 3 | -3 | 1 | -1 |
y | 1 | -1 | -1 | 1 |
Kết luận nhé
l x l + l y l = 3
=> x thuộc { - 2 , - 1 , 0 , 1 , 2 , 3} mà x > 0 => x thuộc { 1 ; 2 ; 3 }
=> y thuộc { -2 , - 1 ,0 , 1 , 2,3 } mà y < 0 => y thuộc { -2 ; -1 }
Vậy ( x , y ) = ....
Ta có\(\left|x\right|+\left|y\right|=3\)
Vì x và y có cùng vai trò nên không mất tính tổng quát ta giả sử \(x\le y\Rightarrow\left|x\right|\ge\left|y\right|\)
Mà x,y<0 nên |x|,|y|>0
Do đó:\(\hept{\begin{cases}\left|x\right|=2\\\left|y\right|=1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)(Vì x,y<0)
Vậy \(\left(x,y\right)\in\left\{\left(-1,-2\right),\left(-2,-1\right)\right\}\)
\(\left(4x^2+4xy+y^2\right)+3\left(x^2+4x+4\right)=7\)
\(\Leftrightarrow\left(2x+y\right)^2+3\left(x+2\right)^2=7\)
\(\Rightarrow3\left(x+2\right)^2\le7\)
\(\Rightarrow\left(x+2\right)^2=\dfrac{7}{3}\)
\(\Rightarrow\left[{}\begin{matrix}\left(x+2\right)^2=0\\\left(x+2\right)^2=1\end{matrix}\right.\)
\(\Rightarrow...\)