Tìm giá trị của hằng số a để pt sau vô nghiêm
a(3x-1)/5-(6x-17)/4+(3x+2)/10=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(A=\frac{6x+9}{3x+2}=\frac{6x+4+5}{3x+2}=\frac{6x+4}{3x+2}+\frac{5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{5}{3x+2}=2+\frac{5}{3x+2}\)
Để A có giá trị nguyên thì \(\frac{5}{3x+2}\) phải nguyên hay \(5\) chia hết cho \(3x+2\)\(\Rightarrow\)\(\left(3x+2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(3x+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(\frac{-1}{3}\) | \(-1\) | \(1\) | \(\frac{-7}{3}\) |
Mà \(x\) là số nguyên nên \(x\in\left\{-1;1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
Chúc bạn học tốt ~
\(b)\) Ta có bất đẳng thức giá trị tuyệt đối như sau :
\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
Dấu "=" xảy ra khi và chỉ khi \(xy\ge0\)
Áp dụng vào ta có :
\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)
Dấu "=" xảy ra khi và chỉ khi \(x\left(8-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x\ge0\\8-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le8\end{cases}\Leftrightarrow}0\le x\le8}\)
Trường hợp 2 :
\(\hept{\begin{cases}x\le0\\8-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le0\\x\ge8\end{cases}}}\) ( loại )
Vậy GTNN của \(A=8\) khi \(0\le x\le8\)
Chúc bạn học tốt ~
Lời giải:
$M=\frac{2x^2-3x+3}{x-2}=\frac{(2x^2-4x)+(x-2)+5}{x-2}$
$=\frac{2x(x-2)+(x-2)+5}{x-2}=2x+1+\frac{5}{x-2}$
Với $x$ nguyên, để $M$ nguyên thì $\frac{5}{x-2}$ nguyên
$\Rightarrow x-2$ là ước của $5$ (do $x$ nguyên)
$\Rightarrow x-2\in\left\{5;-5;1;-1\right\}$
$\Rightarrow x\in\left\{7; -3; 3; 1\right\}$
a) Ta có :
\(3x=3\left(x+2\right)\)
\(\Leftrightarrow3x=3x+2\)
\(\Leftrightarrow0=2\) ( vô lí )
Do đó pt đã cho vô nghiệm
b) Ta có \(\left|x\right|=-x^2-2\) (1)
Nhân xét : VT (1) : \(\left|x\right|\ge0\forall x\)
VP (1) : \(-x^2\le0\Leftrightarrow-x^2-2\le-2\forall x\)
Do đó : \(VT\ne VP\)
Vì vậy pt đã cho vô nghiệm
`a)ĐK:(x+1)(2x-6) ne 0`
`<=>(x+1)(x-3) ne 0`
`<=> x ne -1,x ne 3`
`b)C=(3x^2+3x)/((x+1)(2x-6))`
`=(3x(x+1))/((x+1)(2x-6))`
`=(3x)/(2x-6)`
`C=1`
`=>3x=2x-6`
`<=>x=-6(tm)`
Vậy `x=-6`