Cho A=|X2+3|+|-x2-4|. C/m A lớn hơn & bằng 0.
Giúp mình nhá,ths các bn nhiều!!!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(mx^3-x^2+2x-8m=0\)
\(\Leftrightarrow m\left(x^3-8\right)-\left(x^2-2x\right)=0\)
\(\Leftrightarrow m\left(x-2\right)\left(x^2+2x+4\right)-x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(mx^2+2mx+4m-x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(mx^2+x\left(2m-1\right)+4m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\mx^2+x\left(2m-1\right)+4m=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\mx^2+x\left(2m-1\right)+4m=0\left(I\right)\end{matrix}\right.\)
- Để phương trình ban đầu có 3 nghiệm phân biệt lớn hơn 1
<=> Phương trình ( I ) có 2 nghiệm phân biệt lớn hơn 1 .
- Xét phương trình ( I ) có : \(\Delta=b^2-4ac=\left(2m-1\right)^2-4m.4m\)
\(=4m^2-4m+1-16m^2=-12m^2-4m+1\)
- Để phương trình ( I ) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow-\dfrac{1}{2}< m< \dfrac{1}{6}\) ( * )
- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{m}\\x_1x_2=4\end{matrix}\right.\)
- Để phương trình ( I ) có nghiệm lớn hơn 1 \(\Leftrightarrow\left\{{}\begin{matrix}x_1-1+x_2-1>0\\\left(x_1-1\right)\left(x_2-1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-4m}{m}>0\\5-\dfrac{1-2m}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-4m}{m}>0\\\dfrac{7m-1}{m}>0\end{matrix}\right.\)
- Lập bảng xét dấu ( đoạn này làm tắt tí nha :vv )
Từ bảng xét dấu ta được : \(\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>\dfrac{1}{7}\end{matrix}\right.\\0< m< \dfrac{1}{4}\end{matrix}\right.\)
- Kết hợp điều kiện ( * ) ta được :\(\dfrac{1}{7}< m< \dfrac{1}{6}\)
Vậy ...
b, - Xét phương trình trên có : \(\Delta^,=b^{,2}-ac=\left(m-2\right)^2-\left(m-1\right)\left(m-3\right)\)
\(=m^2-4m+4-m^2+m+3m-3=1>0\)
Nên phương trình có 2 nghiệm phân biệt .
Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-2\right)}{m-1}\\x_1x_2=\dfrac{m-3}{m-1}\end{matrix}\right.\)
- Để \(x_1+x_2+x_1x_2< 1\)
\(\Leftrightarrow\dfrac{2\left(m-2\right)+\left(m-3\right)-\left(m-1\right)}{m-1}< 0\)
\(\Leftrightarrow\dfrac{2m-6}{m-1}< 0\)
- Đặt \(\dfrac{2m-6}{m-1}=f\left(m\right)\)
Cho f(m) = 0 => m = 3
m-1 = 0 => m = 1
- Lập bảng xét dầu :
m.............................1..........................................3...................................
2m-6............-..........|......................-.....................0...................+.................
m-1..............-............0...................+.....................|....................+.................
f(m).............+...........||..................-........................0................+....................
- Từ bảng xét dầu ta được : Để \(f\left(m\right)< 0\)
\(\Leftrightarrow1< m< 3\)
Vậy ...
\(\Delta'=\left(m-1\right)^2+\left(m+1\right)=m^2-m+2=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)
Phương trình luôn có 2 nghiệm phân biệt với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1x_2=-\left(m+1\right)\end{matrix}\right.\)
Phương trình có cả 2 nghiệm không lớn hơn 3 khi: \(x_1< x_2\le3\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x_1-3\right)\left(x_2-3\right)\ge0\\\dfrac{x_1+x_2}{2}< 3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1x_2-3\left(x_1+x_2\right)+9\ge0\\x_1+x_2< 6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-\left(m+1\right)+6\left(m-1\right)+9\ge0\\-2\left(m-1\right)< 6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge-\dfrac{2}{5}\\m>-2\end{matrix}\right.\) \(\Rightarrow m\ge-\dfrac{2}{5}\)
Vậy phương trình có ít nhất 1 nghiệm lớn hơn 3 khi: \(m< -\dfrac{2}{5}\)
\(x^3-x^2+2mx-2m=0\)
\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)
Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)
a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\)
Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)
Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu
b.
Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)
\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn
Em coi lại đề bài
Ptr có nghiệm `<=>\Delta' >= 0`
`<=>[-(m+1)]^2-(m^2+4) >= 0`
`<=>m^2+2m+1-m^2-4 >= 0`
`<=>m >= 3/2`
Với `m >= 3/2`, áp dụng Vi-ét có:`{(x_1+x_2=[-b]/a=2m+2),(x_1.x_2=c/a=m^2+4):}`
Ta có:`C=x_1+x_2-x_1.x_2+3`
`<=>C=2m+2-m^2-4+3`
`<=>C=-m^2+2m+1`
`<=>C=-(m^2-2m+1)+2`
`<=>C=-(m-1)^2+2`
Vì `-(m-1)^2 <= 0 AA m >= 3/2`
`<=>-(m-1)^2+2 <= 2 AA m >= 3/2`
Dấu "`=`" xảy ra`<=>(m-1)^2=0<=>m=1` (ko t/m)
Vậy không tồn tại `m` để `C` có `GTLN`
Phương trình x 2 – 2(m + 4)x + m 2 – 8 = 0 có a = 1 ≠ 0 và
∆ ' = ( m + 4 ) 2 – ( m 2 – 8 ) = 8 m + 24
Phương trình có hai x 1 ; x 2 ⇔ ∆ ' ≥ 0 ⇔ 8 m + 24 ≥ 0
Áp dụng định lý Vi – ét ta có x 1 + x 2 = 2 ( m + 4 ) ; x 1 . x 2 = m 2 – 8
Ta có:
A = x 1 + x 2 − 3 x 1 x 2
= 2 (m + 4) – 3 ( m 2 – 8) = 3 m 2 + 2m + 32 = − 3 m 2 − 2 3 m − 32 3
= − 3 m − 1 3 2 + 97 3
Nhận thấy A ≤ 97 3 và dấu “=” xảy ra khi m − 1 3 = 0 ⇔ m = 1 3 (TM)
Vậy giá trị lớn nhất của A là 97 3 khi m = 1 3
Đáp án: A
Ta có: !x^2+3! > hoặc = 0
!-x^2-4! . hoặc = 0
Suy ra:!x^2+3!+!-x^2-4! > hoặc = 0
Vậy A> hoặc = 0