CMR : những số có số ước là lẻ thì là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi P là một số chính phương.
Ta có: P = k2 (k ∈ N)
Giả sử k phân tích ra thừa số nguyên tố là k = ax.by.cz.... (a, b, c là các số nguyên tố)
=> P = (ax.by.cz....)2
=> P = a2x.b2y.c2z
Vì 2⋮2 nên 2x, 2y, 2z, ... cũng chia hết cho 2
=> 2x, 2y, 2z, ... là số chẵn
Số lượng ước của P là (2x + 1)(2y + 1)(2z + 1)...
Vì 2x, 2y, 2z, ... là số chẵn nên 2x + 1, 2y + 1, 2z + 1, ... là số lẻ
=> (2x + 1)(2y + 1)(2z + 1)... là số lẻ
=> Số lượng ước của P là 1 số lẻ
Vậy số chính phương luôn có số ước là 1 số lẻ.
Gọi số tự nhiên khác 0 bất kì thỏa mãn đề bài là a
+ Nếu a = 1 thì a có duy nhất 1 ước là 1, là số lẻ; a = 1 = 12, là số chính phương, thỏa mãn đề bài
+ Nếu a > 1 => a = \(x^y\).\(^{z^k}\)... (x,z,... là các số nguyên tố; y,k,... là các số tự nhiên khác 0)
=> số ước của a là: (y + 1).(k + 1)... là số lẻ
=> y + 1 là số lẻ; k + 1 là số lẻ; ...
=> y chẵn; k chẵn; ...
=> \(\frac{x}{y}\); \(\frac{z}{k}\); ... là số chính phương
Mà số chính phương x số chính phương = số chính phương => a là số chính phương
Chứng tỏ 1 số tự nhiên khác 0 có số lượng ước là 1 số lẻ thì số tự nhiên đó là 1 số chính phương
CÁI NÀY ĐÚNG NÈ NHẤT NÈ NHA
Gọi số tự nhiên khác 0 bất kì thỏa mãn đề bài là a
+ Nếu a = 1 thì a có duy nhất 1 ước là 1, là số lẻ; a = 1 = 12, là số chính phương, thỏa mãn đề bài
+ Nếu a > 1 => a =\(x^y\)..\(z^k\). (x,z,... là các số nguyên tố; y,k,... là các số tự nhiên khác 0)
=> số ước của a là: (y + 1).(k + 1)... là số lẻ
=> y + 1 là số lẻ; k + 1 là số lẻ; ...
=> y chẵn; k chẵn; ...
=> \(x^y\); \(z^k\)... là số chính phương
Mà số chính phương x số chính phương = số chính phương => a là số chính phương
Chứng tỏ 1 số tự nhiên khác 0 có số lượng ước là 1 số lẻ thì số tự nhiên đó là 1 số chính phương
Gọi số tự nhiên khác 0 bất kì thỏa mãn đề bài là a
*) Nếu a = 1 thì a có duy nhất 1 ước là 1, là số lẻ; a = 1 = 12, là số chính phương, thỏa mãn đề bài
*) Nếu a > 1 => a = xy.zk... (x,z,... là các số nguyên tố; y,k,... là các số tự nhiên khác 0)
=> số ước của a là: (y + 1).(k + 1)... là số lẻ
=> y + 1 là số lẻ; k + 1 là số lẻ; ...
=> y chẵn; k chẵn; ...
=> xy; zk; ... là số chính phương
Mà số chính phương x số chính phương = số chính phương
=> a là số chính phương
=>1 số tự nhiên khác 0 có số lượng ước là 1 số lẻ thì số tự nhiên đó là 1 số chính phương (đpcm)
Lời giải:
1.
Gọi số chính phương có tận cùng là $5$ là $a^2$. Khi đó $a$ cũng phải có tận cùng là $5$
Đặt \(a=\overline{A5}\)
\(\Leftrightarrow a^2=(\overline{A5})^2=(10A+5)^2=100A^2+100A+25\)
\(\Rightarrow a^2\) chia $100$ dư $25$ nên $a^2$ có tận cùng là $25$ hay chữ số hàng chục là $2$
--------------------
2.
Giả sử tồn tại số chính phương $a^2$ có tận cùng là $6$ và chữ số hàng chục là số chẵn.
Khi đó, $a^2$ có thể có tận cùng là $06,26,46,...,86$ $\rightarrow a^2$ không chia hết cho $4$ (1)
Mà $a^2$ có tận cùng bằng $6$ $\rightarrow a^2$ là scp chẵn, $\rightarrow a$ chẵn, $\rightarrow a.a=a^2$ chia hết cho $4$ (mâu thuẫn với (1))
Do đó không tồn tại số cp có tận cùng bằng $6$ mà chữ số hàng chục chẵn. Hay 1 số cp có tận cùng là 6 thì chữ số hàng chục là lẻ.
3.
Giả sử tồn tại số chính phương $a^2$ có tận cùng là $4$ mà chữ số hàng chục lẻ.
Khi đó $a^2$ có thể có tận cùng $14,34,...,94$. Những số trên đều không chia hết cho $4$ nên $a^2$ không chia hết cho $4$ (1)
Mà $a^2$ tận cùng là $4$ nên $a^2$ là scp chẵn. Do đó $a$ chẵn hay $a\vdots 2$
$\rightarrow a^2=a.a\vdots 4$ (mâu thuẫn với (1))
Do đó không tồn tại scp có tận cùng bằng 4 mà chữ số hàng chục lẻ. Hay một số cp có tận cùng là 4 thì chữ số hàng hàng chục là số chẵn.
-----------------
4.
Gọi $a^2$ là scp có tận cùng $n$ chữ số $0$. Khi đó $a$ cũng phải có tận cùng bẳng $0$
Đặt \(a^2=(\overline{A0...0})^2\) ($n$ chữ số 0)
\(=(10^nA)^2=10^{2n}A^2=A^2.10...0\) ($n$ chữ số 0)
Hay $a^2$ có tận cùng là $2n$ chữ số $0$. $2n$ là số chẵn nên $a^2$ có lượng chẵn chữ số 0 tận cùng (đpcm)