Cho a=2 mũ 1+2 mũ 2+2 mũ 3+2 mũ 4+.....+2 mũ 10
Không tính a ,hãy chứng tỏ A +2=2 mũ 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4^{13}+4^{14}+4^{15}+4^{16}=4^{13}\left(1+4\right)+4^{14}\left(1+4\right)=4^{13}.5+4^{14}.5=5\left(4^{13}+4^{14}\right)⋮5\Rightarrow dpcm\)
c) \(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}\)
\(=2^{10}\left(1+2+2^2\right)+2^{13}\left(1+2+2^2\right)\)
\(=2^{10}.7+2^{13}.7=7\left(2^{10}+2^{13}\right)⋮7\Rightarrow dpcm\)
Câu c bạn xem lại đê
Sửa đề: \(A=2^0+2^1+2^2+...+2^{99}\)
\(=\left(2^0+2^1\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{98}\left(1+2\right)\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
Có 7 chia hết cho 7
Có 7^2 chia hết cho 7
.....
Có 7^12 chia hết cho 7
=>7+7^2+7^3+.....+7^12 chia hết cho 7
=> A chia hết cho 7
cho A=7+7 mũ 2+7 mũ 3+...+7 mũ 10+7 mũ 11 +7 mũ 12
chứng tỏ A chia hết cho 7
7+7^2+7^3+.....+7^12 chia hết cho 7
=> A chia hết cho 7
Ta có :
A=21+22+23+...+210
=> 2A = 22+23+24+...+211
=> 2A-A=(22+23+...+211)-(21+22+...+210)
=> A = 211-2
=> A+2=211