K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2022

Cảm phiền bạn tự vẽ hình nhé.

Để cm AN là trung trực của IK thì ta chứng minh cả 2 điểm A và N đều thuộc trung trực của IK.

CM A thuộc trung trực của IK:

Do AC là trung trực của MK nên A thuộc trung trực của MK, do đó \(AM=AK\)

Tương tự, ta có \(AM=AI\). Từ đó \(AI=AK\left(=AM\right)\) hay A thuộc trung trực của IK.

CM N cũng thuộc trung trực của IK:

Vẽ tia đối Ax của tia AC. Áp dụng tính chất góc ngoài cho tam giác AKN, ta có \(\widehat{NAx}=\widehat{AKN}+\widehat{ANK}\). Mặt khác dễ thấy \(AK=AM=AN\) nên tam giác AKN cân tại A, từ đó \(\widehat{AKN}=\widehat{ANK}\). Vậy \(\widehat{NAx}=2\widehat{AKN}\)

Tương tự, ta được \(\widehat{IAx}=2\widehat{AKI}\). Từ đây ta có \(\widehat{IAN}=\widehat{NAx}-\widehat{IAx}=2\left(\widehat{AKN}-\widehat{AKI}\right)=2\widehat{IKN}\) hay \(\widehat{IKN}=\dfrac{1}{2}\widehat{IAN}\)

Kẻ tiếp tia đối Ay của tia AB, hoàn toàn tương tự như trên, ta cũng chứng minh được \(\widehat{NIK}=\dfrac{1}{2}\widehat{NAK}\)

Hiển nhiên \(\widehat{IAN}=\widehat{NAK}\) \(\Rightarrow\widehat{IKN}=\widehat{NIK}\) \(\Rightarrow\Delta NIK\) cân tại N hay \(NI=NK\). Từ đó N thuộc trung trực của IK. Vậy ta có đpcm.

 

 

 

24 tháng 9 2022

Bạn ơi cho mình hỏi, tại sao góc IAN lại bằng góc NAK vậy? Mình chưa hiểu chỗ đó cho lắm

13 tháng 6 2019

22 tháng 6 2020

tự kẻ hình nha:333

a) vì AB là trung trực của DM=> MH=HD( đặt H là giao điểm của AB và DM)

xét tam giác MAB và tam giác  DAB có

MH=HD(cmt)

AHM=AHD(=90 độ)

AH chung

=> tam giác MAB= tam giác DAB(cgc)

=> AM=AD( hai cạnh tương ứng)

vì AC là trung trực của DN=> NK=DK( đặt K là giao điểm của AC và DN)

xét tam giác AKD và tam giác AKN có

DK=NK(cmt)

AKD=AKN(=90 độ)

AK chung

=> tam giác AKD= tam giác AKN( cgc)

=> AN=AD ( hai cạnh tương ứng)

AM=AD(cmt)

=> AM=AN=> tam giác AMN cân A

b) vì E thuộc đường trung trực AB=> EM=ED

vì F thuộc đường trung trực AC=> FD=FN

ta có MN=ME+EF+FN mà EM=ED, FD=FN

=> MN= ED+EF+FD

c) xét tam giác ADF và tam giác ANF có

FD=FN(cmt)

AD=AN(cmt)

AF chung

=> tam giác ADF= tam giác ANF(ccc)

=> ANF=ADF( hai góc tương ứng)

xét tam giác AME và tam giác ADE có

AM=AD(cmt)

AE chung

EM=ED(cmt)

=> tam giác AME= tam giác ADE(ccc)

=> AME=ADE( hai góc tương ứng)

mà AME=ANF( tam giác AMN cân A)

=> ADE=ADF=> AD là p/g của EDF

d) chưa nghĩ đc :)))))))

12 tháng 5 2021

CHUẨN R BN ƠI HỌC THÌ NGU MÀ CHƠI NGU THÌ GIỎI 

30 tháng 10 2016

AD = AH (AB là đường trung trực của DH)

AH = AE (AC là đường trung trực của EH)

=> AD = AE

1 tháng 11 2016

còn phần b

4 tháng 2

a) Vì A thuộc đường trung trực của HD nên suy ra :AD=AH (1)

 

Vì A thuộc đường trung trực của HE nên suy ra :AE=AH (2)

 

Từ (1) và (2) ta có: AD=AH=AE

 

=> AD=AE(đpcm)

 

b) Kẻ I với H ; K với H

 

Theo câu a ta có AD=AE 

 

=>Tam giác ADE cân tại A => góc ADE =góc AED 

 

Vì AD=AH nên =>tam giác ADH cân tại A 

 

=>góc ADH =góc AHD (1)

 

Vì AE=AH nên => tam giác AHE cân tại A 

 

=> góc AHE=góc AEH (2) 

 

Vì K thuộc đường trung trực của HE 

 

=> KE = KH => tam giác KHE cân tại K

 

=> góc KHE =góc KEH (3)

 

Vì I thuộc đường trung trực của HD 

 

=> ID = IH => tam giác IDH cân tại I

 

=> góc IDH =góc IHD (4)

 

Từ (1)và (4) =>góc ADE=AHI

 

Từ (2)và (4) =>góc AED=AHK 

 

Mà ADE=AED(cmt) => AHI=AHK 

 

Vậy suy ra HA là tia p/g của góc IHK

4 tháng 2

a) Vì A thuộc đường trung trực của HD nên suy ra :AD=AH (1)

 

Vì A thuộc đường trung trực của HE nên suy ra :AE=AH (2)

 

Từ (1) và (2) ta có: AD=AH=AE

 

=> AD=AE(đpcm)

 

b) Kẻ I với H ; K với H

 

Theo câu a ta có AD=AE 

 

=>Tam giác ADE cân tại A => góc ADE =góc AED 

 

Vì AD=AH nên =>tam giác ADH cân tại A 

 

=>góc ADH =góc AHD (1)

 

Vì AE=AH nên => tam giác AHE cân tại A 

 

=> góc AHE=góc AEH (2) 

 

Vì K thuộc đường trung trực của HE 

 

=> KE = KH => tam giác KHE cân tại K

 

=> góc KHE =góc KEH (3)

 

Vì I thuộc đường trung trực của HD 

 

=> ID = IH => tam giác IDH cân tại I

 

=> góc IDH =góc IHD (4)

 

Từ (1)và (4) =>góc ADE=AHI

 

Từ (2)và (4) =>góc AED=AHK 

 

Mà ADE=AED(cmt) => AHI=AHK 

 

Vậy suy ra HA là tia p/g của góc IHK

a) Vì MD là trung trực AB trong ∆AMD 

=> ∆AMD cân tại A 

=> AM = AD 

Vì DN là trung trực AC trong ∆ADN 

=>∆ADN cân tại A 

=> AD = AN 

Mà AM = AD 

=> AM = AN 

=> ∆AMN cân tại A