Cho tam giác ABC đều cạnh 10 cm, phân giác AD
a, tính BD , AD
b,đường trung tuyến CE của tam giác ABC cắt AD ở I. Tính DI
c,kéo dài BI cắt AC tại F. Tính AF , EC
Giúp mình với các bạn ơi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có √(92+122)=15 nên theo định lý đảo của định lý pitago => ∠BAC=90 độ
Xét △ADB và △CAB có:
∠BAC=∠BDA(=90 độ), ∠ACB chung => △ADB ∼ △CAB (g.g) (1)
b, BE là đường phân giác của △ABC => \(\dfrac{AB}{AE}=\dfrac{BC}{EC}\)
Gọi AE= x (cm) => EC=12-x (cm)
Ta có: \(\dfrac{9}{x}=\dfrac{15}{12-x}\)=> 108-9x=15x =>108=24x => x=4,5
Vậy EA=4,5 cm, EC=12-4,5=7,5 cm
c, Xét △CAB và △CDA có:
∠BCD chung, ∠ADC=∠BAC(=90 độ) => △CAB ∼ △CDA (g.g) (2)
Từ (1),(2) => △ADB ∼ △CDA (T/c bắc cầu)
=> \(\dfrac{AD}{CD}=\dfrac{DB}{AD}\) => AD2=BD.DC
d, SABC=\(\dfrac{1}{2}.AB.AC\)=\(\dfrac{1}{2}AD.BC\)
=> AB.AC=AD.BC => AD = \(\dfrac{9.12}{15}\)=7,2 cm
Áp dụng định lí Pitago vào △ADC vuông tại D:
AC2=AD2+DC2 => DC=√[122-(7,2)2]=9,6 cm
=> BD=BC-DC=15-9,6=5,4 cm
BI là đường phân giác của △ABD => \(\dfrac{AB}{AI}=\dfrac{BD}{DI}\)
Gọi ID=y (cm) => AI=7,2-y (cm)
Ta có: \(\dfrac{9}{7,2-y}=\dfrac{5,4}{y}\)=> 9y=38,88-5,4y => 14,4y=38,88 => y = 2,7
Nên ID=2,7 cm
b: Xét ΔADB và ΔAEC có
\(\widehat{A}\) chung
\(\widehat{ABD}=\widehat{ACE}\left(=\dfrac{1}{2}\widehat{ABC}\right)\)
Do đó: ΔADB\(\sim\)ΔAEC
a. Gọi G là trung điểm AD
Tam giác ABC đều \(\Rightarrow\widehat{B}=\widehat{C}=60^0\)
\(CD=BC-BD=40\left(cm\right)\)
Trong tam giác vuông BDI:
\(sinB=\dfrac{ID}{BD}\Rightarrow DI=BD.sinB=20.sin60^0=10\sqrt{3}\left(cm\right)\)
\(cosB=\dfrac{IB}{BD}\Rightarrow IB=BD.cosB=20.cos60^0=10\left(cm\right)\)
Trong tam giác vuông CDK:
\(sinC=\dfrac{DK}{CD}\Rightarrow DK=CD.sinC=40.sin60^0=20\sqrt{3}\left(cm\right)\)
\(cosC=\dfrac{KC}{CD}\Rightarrow KC=CD.cosC=40.cos60^0=20\left(cm\right)\)
b. Gọi M là trung điểm BC \(\Rightarrow BM=CM=\dfrac{1}{2}BC=30\left(cm\right)\)
\(DM=BM-BD=10\left(cm\right)\) ; \(AM=\dfrac{AB\sqrt{3}}{2}=30\sqrt{3}\left(cm\right)\)
Áp dụng định lý Pitago cho tam giác vuông ADM:
\(AD=\sqrt{AM^2+DM^2}=20\sqrt{7}\left(cm\right)\)
\(AG=DG=\dfrac{AD}{2}=10\sqrt{7}\left(cm\right)\)
\(AI=AB-BI=50\left(cm\right)\)
Hai tam giác vuông AEG và ADI đồng dạng (chung góc \(\widehat{IAD}\))
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AG}{AI}\Rightarrow AE=\dfrac{AG.AD}{AI}=28\left(cm\right)\)
Do EG là trung trực AD \(\Rightarrow DE=AE=28\left(cm\right)\)
Tương tự ta có \(AK=AC-CK=40\left(cm\right)\)
Hai tam giác vuông AGF và AKD đồng dạng
\(\Rightarrow\dfrac{AG}{AK}=\dfrac{AF}{AD}\Rightarrow AF=\dfrac{AG.AD}{AK}=35\left(cm\right)\)
\(\Rightarrow DF=AF=35\left(cm\right)\)
\(EF=EG+FG=\sqrt{AE^2-AG^2}+\sqrt{AF^2-AG^2}=7\sqrt{21}\left(cm\right)\)