100+99+98+97+...+4+3+2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = − 1 + − 1 + ... + − 1 + − 1 = − 1.50 = − 50.
b)
B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100 = 1 − 2 + − 3 + 4 + 5 − 6 + ... + 97 − 98 + − 99 + 100 = − 1 + 1 + − 1 + ... + − 1 + 1 = − 1 + 1 + − 1 + 1 + ... + − 1 + 1 − 1 = 0 + 0 + ... + 0 − 1 = − 1.
Đặt A
=> 4 x A = 1 x 2x 3 x 4+2 .3 .4.4 + .........+ 97. 98 . 99 . 4 + 98 . 99 . 100
=> 4 x A = 1 . 2 .3 . (4 - 0) + 2 . 3 . 4 . (5 - 1) + ........+ 97 . 98 . 99 . (100 - 96 ) + 98 .99 .100 . (101 - 97 )
=> 4 x A = 1 . 2 .3 . 4 - 0. 1 .2 .3 + 2. 3. 4 .5 - 1.2 .3 .4 + ..........+ 97 . 98 . 99. 100 - 96 . 97 .98. 99 + 98 .99 . 100 .101 -97 .98 .99. 100
=> 4 x A = 98 . 99 .100 - 0. 1 .2 .3
=> A = \(\frac{98.99.100-6}{4}\)
=> A = 242548.5
Tick cho tớ nha
1) 1+(-2)+3+(-4)+...+19+(-20) Tổng trên có : (20-1):1+1=20 ( số hạng )
= [1+(-2)]+[3+(-4)]+...+[19+(-20)] Có 20:2=10 nhóm
= (-1)+(-1)+(-1)+...+(-1) Có 10 số (-1)
=(-1).10=-10
\(=\frac{99}{100}.\frac{99}{98}.\frac{98}{97}.\frac{97}{96}.....\frac{4}{3}.\frac{3}{2}.\frac{2}{1}\)
Ta loại các số giống nhau ở tử và mẫu thì được
\(\frac{99}{100}.\frac{99}{1}\)
\(=\frac{9801}{100}\)
= \(\frac{99}{100}.\frac{99}{98}.\frac{98}{97}.\frac{96}{97}...\frac{4}{3}.\frac{3}{2}.\frac{2}{1}\)
Ta loại các số giống nhau ở tử số và mẫu số thì đc :
\(\frac{99}{100}.\frac{99}{1}\)
= \(\frac{9801}{100}\)
A = 1 - 2 - 3 - 4 + 5 - 6 - 7 - 8 + ........... + 97 - 98 - 99 - 100 (100 số )
A = (1 - 2 - 3 - 4) + (5 - 6 - 7 - 8) + ................ + (97 - 98 - 99 - 100)
(25 cặp , tính bằng cách lấy số cả dãy chia cho số số của mỗi cặp )
A = (-8) . 25
A = -200
1) 1-2+3-4+....+99-100
Số số hạng là: (100-1):1+1=100 (số)
Nhóm hai số 1 cặp ta được số cặp là:100:2=50
(1-2)+(3-4)+.....+(99-100)
=(-1)+(-1)+...+(-1)
=100.(-1)
=-100
Đây là dạng tính tổng cơ bản. Mình đưa công thức tổng quát với n số hạng rồi bạn tự tính nhé.
\(S=1+2+3+4+...+n;n\inℕ^∗\\ S=\dfrac{1+n}{2}.n\)