K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2022

Áp dụng hệ quả định lí hàm Cos ta có:

a.cosB=b.cosA\\ \Leftrightarrow a.\dfrac{a^2+c^2-b^2}{2ac}=b.\dfrac{b^2+c^2-a^2}{2bc}\\

\Leftrightarrow\dfrac{a^2+c^2-b^2}{2c}=\dfrac{b^2+c^2-a^2}{2c}\\

\Leftrightarrow a^2+c^2-b^2=b^2+c^2-a^2\\

\Leftrightarrow a^2-b^2=b^2-a^2\\ \Rightarrow a=b

Vậy tam giác ABC cân tại C

NV
13 tháng 12 2020

\(\Leftrightarrow sinA=2sinB.cosC\)

\(\Leftrightarrow\dfrac{a}{2R}=2.\dfrac{b}{2R}.\dfrac{a^2+b^2-c^2}{2ab}\)

\(\Leftrightarrow a^2=a^2+b^2-c^2\)

\(\Leftrightarrow b^2=c^2\Leftrightarrow b=c\)

Vậy tam giác ABC cân tại A

15 tháng 10 2019

Ta có:

Vì:

Suy ra, tam giác ABC vuông tại A

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có: \(A+B+C=180^o\)

a)

\(\sin (B + C) = \sin \left( {{{180}^o} - A} \right) = \sin A\)

Vậy \(\sin A = \sin \;(B + C)\)

b)

\(\cos (B + C) = \cos \left( {{{180}^o} - A} \right) =  - \cos A\)

Vậy \(\cos A =  - \cos \;(B + C)\)

25 tháng 12 2015

a) Do A + B + C = 180 độ nên góc A bù với góc B + C => sin(B + C) = sinA (sin hai góc bù bằng nhau)

 (A + B)/2 + C/2 = 90 độ => hai góc (A + B)/2 và C/2 là hai góc phụ nhau => cos (A + B)/2 = sin(C/2) (Chắc đề bài bạn cho nhầm thành sinC)

b) Bạn xem lại đề nhé

c) \(sin^6a+cos^6a+3sin^2a.cos^2a=\left(sin^2a\right)^3+\left(cos^2a\right)^3+3.sin^2a.cos^2a\)

   = \(\left(sin^2a+cos^2a\right)\left(sin^4a+cos^4a-sin^2a.cos^2a\right)+3sin^2a.cos^2a\)

\(sin^4a+cos^4a+2sin^2a.cos^2a\)

\(\left(sin^2a+cos^2a\right)^2=1\)

2 tháng 7 2018

A, B , C là ba góc của ΔABC nên ta có: A + B + C = 180º

a) sin A = sin (180º – A) = sin (B + C)

b) cos A = – cos (180º – A) = –cos (B + C)

17 tháng 10 2021

Kẻ đg cao AH thì AH cũng là trung tuyến

Do đó \(BH=\dfrac{1}{2}BC=5\left(cm\right)\)

\(\Rightarrow\cos\widehat{B}=\dfrac{BH}{AB}=\dfrac{5}{13}\)

 

29 tháng 7 2023

\(1+tan^2B=1+\left(\dfrac{AC}{AB}\right)^2=\dfrac{AC^2+AB^2}{AB^2}=\dfrac{BC^2}{AB^2}\)

\(=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}\)

\(=\dfrac{1}{cos^2B}\)

1+tan^2B

=1+(AC/AB)^2

=AB^2/AB^2+AC^2/AB^2

=BC^2/AB^2

=1:(AB/BC)^2

=1:cos^2B