( x + 2x - 9)(3x -12) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: 7x+12=0
\(\Leftrightarrow7x=-12\)
hay \(x=-\frac{12}{7}\)
Vậy: \(x=-\frac{12}{7}\)
b) Ta có: 5x-2=0
\(\Leftrightarrow5x=2\)
hay \(x=\frac{2}{5}\)
Vậy: \(x=\frac{2}{5}\)
c) Ta có: 12-6x=0
\(\Leftrightarrow6x=12\)
hay x=2
Vậy: x=2
d) Ta có: -2x+14=0
⇔-2x=-14
hay x=7
Vậy: x=7
Bài 2:
a) Ta có: 3x+1=7x-11
⇔3x+1-7x+11=0
⇔-4x+12=0
⇔-4x=-12
hay x=3
Vậy: x=3
b) Ta có: 2x+x+12=0
⇔3x+12=0
⇔3x=-12
hay x=-4
Vậy: x=-4
c) Ta có: x-5=3-x
⇔x-5-3+x=0
⇔2x-8=0
⇔2x=8
hay x=4
Vậy: x=4
d) Ta có: 7-3x=9-x
⇔7-3x-9+x=0
⇔-2x-2=0
⇔-2x=2
hay x=-1
Vậy: x=-1
e) Ta có: 5-3x=6x+7
⇔5-3x-6x-7=0
⇔-9x-2=0
⇔-9x=2
hay \(x=\frac{-2}{9}\)
Vậy: \(x=\frac{-2}{9}\)
f) Ta có: 11-2x=x-1
⇔11-2x-x+1=0
⇔12-3x=0
⇔3x=12
hay x=4
Vậy: x=4
g) Ta có: 15-8x=9-5
⇔15-8x=4
⇔8x=11
hay \(x=\frac{11}{8}\)
Vậy: \(x=\frac{11}{8}\)
Bài 3:
a) Ta có: 0,25x+1,5=0
⇔0,25x=-1,5
hay x=-6
Vậy: x=-6
b) Ta có: 6,36-5,2x=0
⇔5,2x=6,36
hay \(x=\frac{159}{130}\)
Vậy: \(x=\frac{159}{130}\)
7)(16-8x)(2-6x)=0
=> 16 - 8x = 0 hoặc 2 - 6x = 0
=> 16 = 8x hoặc 2 = 6x
=> x = 2 hoặc x = 1/3
8) (x+4)(6x-12)=0
=> x + 4 = 0 hoặc 6x - 12 = 0
=> x = -4 hoặc x = 2
9) (11-33x)(x+11)=0
=> 11 - 33x = 0 hoặc x + 11 = 0
=> x = 1/3 hoặc x = -11
10) (x-1/4)(x+5/6)=0
=> x - 1/4 = 0 hoặc x + 5/6 = 0
=> x = 1/4 hoặc x = -5/6
11) (7/8-2x)(3x+1/3)=0
=> 7/8 - 2x = 0 hoặc 3x + 1/3 = 0
=> 2x = 7/8 hoặc 3x = -1/3
=> x = 7/16 hoặc x = -1/9
12)3x-2x^2=0
=> x(3 - 2x) = 0
=> x = 0 hoặc 3 - 2x = 0
=> x = 0 hoặc x = 3/2
\(a,\left(16-8x\right)\left(2-6x\right)=0\)
\(\hept{\begin{cases}16-8x=0\\2-6x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=\frac{1}{3}\end{cases}}}\)
\(b,\left(x+4\right)\left(6x-12\right)=0\)
\(\hept{\begin{cases}x+4=0\\6x-12=0\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\x=2\end{cases}}}\)
\(c,\left(11-33x\right)\left(x+11\right)=0\)
\(\hept{\begin{cases}11-33x=0\\x+11=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\x=-11\end{cases}}}\)
\(d,\left(x-\frac{1}{4}\right)\left(x+\frac{5}{6}\right)=0\)
\(\hept{\begin{cases}x-\frac{1}{4}=0\\x+\frac{5}{6}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\x=-\frac{5}{6}\end{cases}}}\)
\(e,\left(\frac{7}{8}-2x\right)\left(3x+\frac{1}{3}\right)=0\)
\(\hept{\begin{cases}\frac{7}{x}-2x=0\\3x+\frac{1}{3}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{4}\\x=-\frac{1}{9}\end{cases}}}\)
\(f,3x-2x^2=0\)
\(x\left(3-2x\right)=0\)
\(\hept{\begin{cases}x=0\\3-2x=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)
a) 5 - 4x = 3x - 9
\(\Leftrightarrow5-4x-3x+9=0\)
\(\Leftrightarrow14-7x=0\)
\(\Leftrightarrow7x=14\Leftrightarrow x=2\)
Vậy \(S=\left\{2\right\}\)
b) \(\left(x-4\right)\left(3x+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-3;4\right\}\)
c) \(\dfrac{x}{x+4}+\dfrac{12}{x-4}=\dfrac{4x+48}{x\cdot x-16}\)(1)
ĐKXĐ: \(x\ne\pm4\)
\(\left(1\right)\Leftrightarrow\dfrac{x\left(x-4\right)+12\left(x+4\right)-4x-48}{\left(x+4\right)\left(x-4\right)}=0\)
\(\Leftrightarrow x^2-4x+12x+48-4x-48=0\)
\(\Leftrightarrow x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-4\left(KTM\right)\end{matrix}\right.\)
Vậy \(S=\left\{0\right\}\)
d) \(4-2x=7-x\)
\(\Leftrightarrow4-2x-7+x=0\)
\(\Leftrightarrow-x-3=0\)
\(\Leftrightarrow-x=3\Leftrightarrow x=-3\)
Vậy \(S=\left\{-3\right\}\)
e) \(\left(x+4\right) \left(8-4x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\8-4x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{-4;2\right\}\)
f) \(\dfrac{x}{x+5}+\dfrac{11}{x-5}=\dfrac{x+55}{x\cdot x-25}\left(2\right)\)
ĐKXĐ: \(x\ne\pm5\)
\(\left(2\right)\Leftrightarrow\dfrac{x\left(x-5\right)+11\left(x+5\right)-x-55}{\left(x+5\right)\left(x-5\right)}=0\)
\(\Leftrightarrow x^2-5x+11x+55-x-55=0\)
\(\Leftrightarrow x^2+5x=0\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-5\left(KTM\right)\end{matrix}\right.\)
Vậy \(S=\left\{0\right\}\)
g) \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)
\(\Leftrightarrow\dfrac{3\left(3x+2\right)-3x-1-10-12x}{6}=0\)
\(\Leftrightarrow9x+6-3x-1-10-12x=0\)
\(\Leftrightarrow-6x-5=0\)
\(\Leftrightarrow-6x=5\)
\(\Leftrightarrow x=-\dfrac{5}{6}\)
Vậy \(S=\left\{-\dfrac{5}{6}\right\}\)
h) \(2x-\left(3-5x\right)=4\left(x+3\right)\)
\(\Leftrightarrow2x-3+5x-4x-12=0\)
\(\Leftrightarrow3x-15=0\)
\(\Leftrightarrow x=5\)
Vậy \(S=\left\{5\right\}\)
i) \(3x-6+x=9-x\)
\(\Leftrightarrow3x-6+x-9+x=0\)
\(\Leftrightarrow5x-15=0\)
\(\Leftrightarrow x=3\)
Vậy \(S=\left\{3\right\}\)
k)\(2t-3+5t=4t+12\)
\(\Leftrightarrow2t-3+5t-4t-12=0\)
\(\Leftrightarrow3t-15=0\)
\(\Leftrightarrow t=5\)
Vậy \(S=\left\{5\right\}\)
a) Ta có: 4x-20=0
\(\Leftrightarrow4x=20\)
hay x=5
Vậy: S={5}
b) Ta có: \(2x+x+12=0\)
\(\Leftrightarrow3x+12=0\)
\(\Leftrightarrow3x=-12\)
hay x=-4
Vậy: S={-4}
c) Ta có: x-5=3-x
\(\Leftrightarrow x-5-3+x=0\)
\(\Leftrightarrow2x-8=0\)
\(\Leftrightarrow2x=8\)
hay x=4
Vậy: S={4}
d) Ta có: 7-3x=9-x
\(\Leftrightarrow7-3x-9+x=0\)
\(\Leftrightarrow-2x-2=0\)
\(\Leftrightarrow-2x=2\)
hay x=-1
Vậy: S={-1}
a)(x+2).(x+3)-(x-2).(x+5)=10
( x^2 +3x+2x+6)-(x^2 +5x-2x-10)=10
x^2 +3x+2x+6-x^2 -5x+2x+10-10=0
2x+6=0
2x=-6
x=-3
a. 7x+12= 0 \(\Leftrightarrow7x=-12\Leftrightarrow x=-\frac{12}{7}\)
b.-2x+14=0 \(\Leftrightarrow-2x=-14\Leftrightarrow x=7\)
c. 3x+1=7x-11 \(\Leftrightarrow3x-7x=-11-1\Leftrightarrow-4x=-12\Leftrightarrow x=3\)
d.2x+x+12=0 \(\Leftrightarrow2x+x=-12\Leftrightarrow3x=-12\Leftrightarrow x=-4\)
e.x-5=3-x \(\Leftrightarrow x+x=3+5\Leftrightarrow2x=8\Leftrightarrow x=4\)
f. 7-3x=9-x \(\Leftrightarrow-3x+x=9-7\Leftrightarrow-2x=2\Leftrightarrow x=-1\)
g. 8-3x=6x+7 \(\Leftrightarrow-3x-6x=7-8\Leftrightarrow-9x=-1\Leftrightarrow x=\frac{1}{9}\)
h. 11-2x=x-1\(\Leftrightarrow-2x-x=-1-11\Leftrightarrow-3x=-12\Leftrightarrow x=4\)
k. 15-8x=9-5x \(\Leftrightarrow-8x+5x=9-15\Leftrightarrow-3x=-6\Leftrightarrow x=2\)
l. 3+2x=5+2 \(\Leftrightarrow2x=5+2-3\Leftrightarrow2x=4\Leftrightarrow x=2\)
a/ \(\left(3x-\dfrac{2}{4}\right)\left(x+\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{2}{4}=0\\x+\dfrac{1}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy ................
b/ \(\left(2x-5\right).\left(\dfrac{3}{2}x+9\right).\left(0,3x-12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\\dfrac{3}{2}x+9=0\\0,3x-12=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\\dfrac{3}{2}x=-9\\0,3x=12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-6\\x=40\end{matrix}\right.\)
Vậy ..
\(a)\left(3x-\dfrac{2}{4}\right).\left(x+\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{2}{4}=0\\x+\dfrac{1}{2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{1}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
\(b)\left(2x-5\right).\left(\dfrac{3}{2}x+9\right).\left(0,3x-12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\\dfrac{3}{2}x+9=0\\0,3x-12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\\dfrac{3}{2}x=-9\\0,3x=12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-6\\x=40\end{matrix}\right.\)
Chúc bạn học tốt!
`(x+2x-9)(3x-12)=0`
`(3x-9)(3x-12)=0`
`@TH1:3x-9=0=>3x=9=>x=3`
`@TH2:3x-12=0=>3x=12=>x=4`
Vậy `x \in`{`3;4`}
.